Skip to main content
Log in

A commentary on current approaches in the aquatic sciences

  • Invited Lecture
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This paper reviews some of the current practices in limnology and oceanography and discusses ways to improve our habits in these fields. A survey of all 253 articles published in the journal Limnology and Oceanography in 1980, 1985, and 1990 indicates that the majority of papers (>60%) were predominantly descriptive, only about 30% used an experimental approach. Of the 27% articles presenting models, only 3% validated these models using field data. Only one out of 253 papers presented biological criteria to reject hypotheses. We discuss the significance of descriptive studies in the fields of limnology and oceanography, the use of numerical techniques to detect spatio-temporal patterns in the data, the significance of reductionism in aquatic sciences, the introduction of ad hoc hypotheses, the problem of selecting study sites, stations, and sample locations in shore and pelagic studies, and strategies available when an experimental approach cannot be used because environmental factors cannot be controlled.

Résumé

L'auteur passe en revue quelques-unes des pratiques habituelles en limnologie et en océanographie et discute des possibilités d'amélioration dans ces domaines. L'examen de 253 articles parus dans le périodique Limnology and Oceanography en 1980, 1985 et 1990 montre que la majorité de ceux-ci (>60%) est à dominante descriptive, et que l'approche expérimentale n'est utilisée que dans 30% des cas. Parmi les 27% d'articles présentant des modèles, seuls 3% valident ces modèles en utilisant des données de terrain. Un seul parmi les 253 articles présente des critères biologiques de rejet des hypothèses. La discussion porte sur l'importance des études descriptives en limnologie et en océanographie, l'emploi des techniques numériques pour détecter des phénomènes spatio-temporels dans les données, la signification du réductionnisme dans les sciences aquatiques, l'introduction d'hypothèses ad hoc, les critères de choix des sites d'études, des stations et des échantillonnages dans les études littorales et pélagiques, et les stratégies valables lorsqu'une approche expérimentale ne peut être employée en raison de facteurs environnementaux non contrôlables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amanieu, M., P. Legendre, M. Troussellier & G.-F. Frisoni, 1989. Le programme ecothau: théorie écologique et base de la modélisation. Oceanologica Acta 12: 189–199.

    Google Scholar 

  • Ardisson, P.-L., E. Bourget & P. Legendre, 1990. Multivariate approach to study species assemblages at large spatio-temporal scales: the community structure of epibenthic fauna of the Estuary an Gulf of St. Lawrence. Can. J. Fish. aquat. Sci. 47: 1364–1377.

    Google Scholar 

  • Ardisson, P.-L. & E. Bourget, 1992. Large-scale ecological patterns: discontinuous distribution of marine benthic epifauna. Mar. Ecol. Prog. Ser. 83: 15–34.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Google Scholar 

  • Bourget, E., N. Martel, L. Lapointe & D. Bussières, 1989. Behavioural, morphological and genetic changes in some North Atlantic populations of the barnacle Semibalanus balanoides. In D. J. Garbary & G. R. South (eds), Evolutionary biogeography of the marine algae of the North Atlantic. NATO ASI Series vol. 22. Springer-Verlag, Berlin: 87–106.

    Google Scholar 

  • Bourget, E., H. Bérard & V. Brock, 1991. Testing hypotheses concerning the formation of shell growth marks in marine pelecypods. Can. J. Zool. 69: 535–546.

    Google Scholar 

  • Chamberlin, T. C., 1965. The method of multiple working hypotheses. Science 148: 754–759.

    Google Scholar 

  • Chatfield, C., 1988. Problem Solving — a statistician's guide. Chapman and Hall, London.

    Google Scholar 

  • Dayton, D. K., 1979. Ecology: A science and a religion. In R. J. Livingston (ed.), Ecological processes in coastal and marine systems. Plenum Press, New York: 3–18.

    Google Scholar 

  • Dayton, P. K. & J. S. Oliver. 1979. An evaluation of experimental analyses of population and community patterns in benthic marine environments. In K. R. Tenore & B. C. Coull (eds), Marine Benthic Dynamics. The Belle W. Baruch Library in Marine Science number 11, University of South Carolina Press, Columbia: 93–120.

    Google Scholar 

  • Denman, K. L. & M. R. Abbott, 1988. Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color images. J. Geophys. Res. 93: 6789–6798.

    Google Scholar 

  • Diamond, J., 1986. Overview: Laboratory experiments, field experiments, and natural experiments. In J. Diamond & T. J. Case (eds), Community ecology. Harper & Row, publishers, New York: 3–22.

    Google Scholar 

  • Downing, J. A., 1991. Biological heterogeneity in aquatic ecosystem. In J. Kolasa & S. T. A. Pickett (eds), Ecological heterogeneity, Springer-Verlag, Berlin: 160–180.

    Google Scholar 

  • Dunham, A. E. & J. F. Quinn, 1983. On hypothesis testing in ecology and evolution. Am. Nat. 122: 602–617.

    Google Scholar 

  • Elliott, J. M., 1977. Method for the analyses of samples of benthic invertebrates. Freshwater Biological Association Scientific Publication No. 25.

  • Gurevitch, J., L. L. Morrow, A. Wallace & J. S. Walsh, 1992. A meta-analysis of competition in field experiments. Am. Nat. 140: 539–572.

    Google Scholar 

  • Hannan, C. A., 1984. Initial settlement of marine invertebrates larvae: The role of passive sinking in a near-bottom turbulent flow environment. Ph. D. Dissertation. MIT/WHOI.

  • Hargrove, W. W. & J. Pickering, 1992 Pseudoreplication a sine qua non for regional ecology. Landscape Ecology 6: 251–258.

    Google Scholar 

  • Himmelman, J. H., A. Cardinal & E. Bourget, 1983. Community development following removal of urchins, Strongylocentrotus droebachiensis, from the rocky subtidal zone of the St.Lawrence Estuary, Eastern Canada. Oecologia (Berlin) 59: 27–39.

    Google Scholar 

  • Hume, D., 1939. Treatise on human nature. Dent, London.

    Google Scholar 

  • Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54: 187–211.

    Google Scholar 

  • Jongman, R. H. G., C. J. G. ter Braak & O. F. R. van Tongeren, 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen.

    Google Scholar 

  • Kent, M. & P. Coker, 1992. Vegetation description and analysis: A practical approach. CRC Press, Boca Raton.

    Google Scholar 

  • Legendre, L. & J. Le Fèvre, 1991. From individual plankton cells to pelagic marine ecosystems and to global biogeochemical cycles. In S. Demers (ed), Particle Analysis in oceanography. Springer-Verlag, Berlin: 261–300.

    Google Scholar 

  • Legendre, L. & J. Le Fèvre, 1992. Interactions between hydrodynamics and pelagic ecosystems: relevance to resource exploitation and climate change. In Benguela Trophic Functioning. Payne, A. I. L., Brink, K. H., Mann, K. H. & R. Hilborn (eds) S. Afr. J. mar. Sci. 12: 477–486.

  • Legendre, L. & P. Legendre, 1983. Numerical ecology. Developments in environmental modelling, 3. Elsevier Science Publ. Co. Amsterdam.

    Google Scholar 

  • Legendre, P. & M.-J. Fortin, 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.

    Google Scholar 

  • Legendre, P., M. Troussellier, V. Jarry & M.-J. Fortin, 1989. Design for simultaneous sampling of ecological variables: from concepts to numerical solutions. Oikos 55: 30–42.

    Google Scholar 

  • Legendre, P., R. R. Sokal, N. L. Oden, A. Vaudor & J. Kim, 1990. Analysis of variance with spatial autocorrelation in both the variable and the classification criterion. Journal of Classification 7: 53–75.

    Google Scholar 

  • Loehle, C., 1987. Hypothesis testing in ecology: psychological aspects and the importance of theory maturation. Quart. Rev. Biol. 62: 397–409.

    Google Scholar 

  • Paine, K. T., 1974. Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15: 93–120.

    Google Scholar 

  • Plante, C. & J. A. Downing, 1989. Production of freshwater invertebrate populations in lakes. Can. J. Sci. aquat. Sci. 46: 1489–1498.

    Google Scholar 

  • Platt, J. R., 1964. Strong inference. Science 146: 347–353.

    Google Scholar 

  • Pomeroy, L. R., 1974. The ocean's food web — a changing paradigm. Bioscience 24: 499–504.

    Google Scholar 

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

    Google Scholar 

  • Popper, K. R., 1968. The logic of scientific discovery. Hutchinson, London.

    Google Scholar 

  • Smouse, P. E., J. C. Long & R. R. Sokal, 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35: 627–632.

    Google Scholar 

  • Sneath, P. H. A. & R. R. Sokal, 1973. Numerical taxonomy. W. H. Freeman, San Francisco.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. 2nd edn. W. M. Freeman and Company. San Francisco.

    Google Scholar 

  • Sokal, R. R., N. L. Oden, B. A. Thomson & J. Kim, 1993. Testing for regional differences in means: distinguishing inherent from spurious spatial autocorrelation by restricted randomization. Geographical Analysis 25: 199–210.

    Google Scholar 

  • Steele, J. H., 1989. The ocean ‘landscape’. Landscape ecology 3: 185–192.

    Google Scholar 

  • ter Braak, C. J. F., 1988. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Braak, C. J. F., 1988. Partial canonical correspondence analysis. In Classification and related methods of data analysis. H. H. Bock (ed.), Elsevier, North Holland: 551–558.

    Google Scholar 

  • Tukey, J. W., 1977. Exploratory data analysis. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Underwood, A. J., 1990. Experiments in ecology and management: their logics, functions and interpretations. Aust. J. Ecol. 15: 365–389.

    Google Scholar 

  • Ward, R. C., J. C. Loftis & G. B. McBride, 1986. The ‘data-rich but information-poor’ syndrome in water quality monitoring. Envir. Mgmt 10: 291–297.

    Google Scholar 

  • Whittaker, R. H., 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr., 30: 279–338.

    Google Scholar 

  • Williams, G. C., 1985. A defense of reductionism in evolutionary biology. In: Oxford Surveys in Evolutionary Biology. Volume 2. R. Dawkins & M. Ridley (eds). Oxford University Press, Oxford: 1–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution to the program of GIROQ (Groupe interuniversitaire de Recherches Océanographiques du Québec)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourget, E., Fortin, MJ. A commentary on current approaches in the aquatic sciences. Hydrobiologia 300, 1–16 (1995). https://doi.org/10.1007/BF00024444

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024444

Key words

Navigation