Skip to main content
Log in

Use of radionuclides in the study of contaminant cycling processes

  • Material cycling
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Of all the geochemical boundaries, the sediment-water interface an exert the greatest control on the cycling of many elements in shallow aquatic environments such as lakes, rivers, estuaries and coastal embayments and, to a lesser extent in the deep sea. Across this interface, the gradients in physical properties (i.e. density), in chemical conditions (i.e. pH, pE, ligand concentrations), biota abundance (i.e. fauna and flora living near the interface) are large, thus producing potentially large fluxes. Some of the physical, chemical, biological and sedimentary controls operating at or near these interfaces can be deciphered from the measurements of natural radioisotopes (e.g. U/Th series or cosmic-ray produced), bomb fallout isotopes or, most recently, fallout from the Chernobyl-reactor accident. Commercially available, reactor-produced isotopes are most often used in enclosures to elucidate the coupling of the various processes at the sediment-water interface, while the former are used both as geochronological tools in the sediments and as tracers to measure or calibrate the rates of exchange across this interface of nutrients or trace elements associated with water or particles.

Applications of radioisotopes for studying biological, physical, chemical and sedimentary processes near the sediment-water interface are discussed. In particular, multitracer approaches to study the dynamic coupling of physical, chemical and biological transport processes in lakes are emphasized. Examples from two hard-water lakes in Switzerland, Lake Biel and Lake Zürich, give evidence for the resuspension of fine (‘rebound’) particles, radionuclides and trace metals from the horizontal boundaries focussing them to their final repositories in the interior of the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baccini, P. & T. Joller, 1981. Transport processes of copper and zinc in a highly eutrophic and meromictic lake. Schweiz. Z. Hydrol. 43: 176–199.

    Google Scholar 

  • Billett, D. S. M., R. S. Lampitt, A. C. Rice & R. F. C. Mantoura, 1983. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302: 520–522.

    Google Scholar 

  • Bruland, K. W., 1980. Oceanographic distributions of Cd, Zn, Ni and Cu in the North Pacific. Earth Planet. Sci. Lett. 47: 176–198.

    Google Scholar 

  • Bruland, K. W., 1983. Trace elements in sea water. In Riley J. P. and R. Chester, (eds.), Chemical Oceanography. Vol. 8. Academic Press, New York: 157–221.

    Google Scholar 

  • Dymond, J., 1984. Sediment traps, particle fluxes and benthic boundary layer processes. In The Global Ocean Flux Study. National Academy Press. Washington, D.C.: 260–28.

    Google Scholar 

  • Eadie, B. J. & A. Robbins, 1987. The role of particulate matter in the movement of contaminants in the Great Lakes. In R. A. Hites & S. Eisenreich (eds.), Sources and Fates of Aquatic Pollutants, ACS Advances in Chemistry Series, 216: 319–364.

  • Goldman, M. 1987. Chernobyl: A radiobiological perspective. Science 238: 622–623.

    Google Scholar 

  • Imboden, S. M., U. Lemmin, T. Joller & M. Schurter, 1983. Mixing processes in Lakes: Mechanisms and ecological relevance. Schweiz. Z. Hydrobiol. 45: 11–44.

    Google Scholar 

  • Imboden, D. M. & Th. Joller, 1984. Turbulent mixing in the hypolimnion of Baldeggersee (Switzerland) traced by natural radon-222. Limnol. Oceanogr. 29: 831–844.

    Google Scholar 

  • Lal, D. & B. Peters, 1967. Cosmic ray produced radioactivity on the earth. In: Encyclopedia of Physics. Springer Verlag. New York: 551–601.

    Google Scholar 

  • Lal, D. & H. E. Suess, 1986. The radioactivity of the atmosphere and hydrosphere. Ann. Rev. Nucl. Sci. 18: 407–434.

    Google Scholar 

  • Lampitt, R. S., 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. 22: 885–897.

    Google Scholar 

  • Lemmin, U. & D. M. Imboden, 1987. Dynamics of bottom currents in a small lake. Limnol. Oceanogr. 32: 62–75.

    Google Scholar 

  • Lowman, F. G., T. R. Rice & F. A. Richards, 1971. Accumulation and redistribution of radionuclides by marine organisms. In Radioactivity in the Marine Environment. Nat. Acad. Sciences. Washington D.C.: 161–199.

    Google Scholar 

  • Murray, J. W., 1987. Mechanisms controlling the distribution of trace elements in oceans and lakes. In R. A. Hites & S. J. Eisenreich (eds.), Sources and Fates of Aquatic Pollutants. ACS Advances in Chemistry Series 216: 153–183.

  • Nyffeler, U. P., 1980. Mischungsprozesse im Bielersee. Ph.D. Thesis, University of Berne. Switzerland. 155 pp.

    Google Scholar 

  • Nyffeler, U. P., P. W. Schindler, U. E. Wirz & D. M. Imboden, 1983. Chemical and geochemical studies of Lake Biel. 11. A chemical approach to lake mixing. Schweiz. Z. Hydro. 45: 45–61.

    Google Scholar 

  • Nyffeler, U. P., P. H. Santschi & Y.-H. Li, 1986. The relevance of scavenging kinetics to modelling of sediment-water interactions in natural waters. Limnol. Oceanogr. 31: 277–292.

    Google Scholar 

  • Odum, E. P. & F. B. Golley, 1963. Radioactive tracers as an aid to the measurement of energy flow at the population level in nature. In Radioecology, V. Schultz and A. W. Klement, Jr. (eds.), Reinhold Publ. New York: 403–411.

    Google Scholar 

  • Robbins, J. A. & D. Edgington, 1975. Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs. Geochim. Cosmochim. Acta 39: 185–304.

    Google Scholar 

  • Robbins, J. A. & R. J. Eadie 1982. Be-7: A tracer of seasonal particle transport processes in Lake Michigan. EOS 63 (45): 957.

    Google Scholar 

  • Rosa, R., J. O. Nriagu & H. K. Wang, 1983. Particulate flux at the bottom of Lake Ontario. Chemosphere, 12: 1345–1354.

    Google Scholar 

  • Santschi, P. H., 1975. Chemical Processes in Lake Biel, Switzerland; Ph.D. Thesis. University of Berne. Switzerland. 307 pp.

    Google Scholar 

  • Santschi, P. H. & P. W. Schindler, 1977. Chemical and geochemical studies of Lake Biel. I. A mass balance for Lake Biel and its implications for the rates of erosion in the drainage area. Swiss. J. Hydrol. 39: 181–200.

    Google Scholar 

  • Santschi, P. H., 1988. Factors controlling the biogeochemical cycles of trace elements in fresh and marine waters as revealed by artificial radioisotopes, Limnol. Oceanogr. 33 (4, part 2): 848–866.

    Google Scholar 

  • Santschi, P. H., S. Bollhalder, K. Farrenkothen, A. Lueck & S. Zingg, 1988. Chernobyl radionuclides in the environment: tracers for the tight coupling of atmospheric, terrestrial and aquatic geochemical processes, Environ. Sci. Technol.: 22, 862–871.

    Google Scholar 

  • Santschi, P. H., Ch. Schuler & M. Sturm, 1987. Natural and Chernobyl radionuclides as tracers of particle settling and resuspension in Lake Zürich, Switzerland. Terra Cognita, 7 (2–3): 185.

    Google Scholar 

  • Santschi, P. H., S. Bollhalder, S. Zingg, A. Lueck & K. Farrankothen, 1989. Contamination of drinking water supplies after radioactive fallout. Evidence from European waters after Chernobyl, 1986–1987. Environ. Sci. Technol., accepted for publication.

  • Schuler, Ch., P. H. Santschi, M. Sturm, A. Lueck, K. Farrenkothen, S. Bollhalder & E. Wieland, 1989. Natural and artificial radionuclides in Lake Zuerich: Tracers for particle and trace element dynamics, submitted for publication.

  • Schuler, Ch., P. H. Santschi & M. Sturm, 1987. Kinetics of 7Be and 210Pb cycling in Lake Zürich, Switzerland, Terra Cognita, 7 (2–3): 184.

    Google Scholar 

  • Sly, P. G., R. L. Thomas & B. T. Pelletier, 1982. Comparison of sediment energy-texture relationship in marine and lacustrine environments. In P. G. Sly (ed.). Sediment/Freshwater Interaction, W. Junk Publ. The Hague: 71–84.

    Google Scholar 

  • UNSCEAR, 1982. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, with annexes No. E. 82 IX.8. New York, United Nations 248 pp.

    Google Scholar 

  • Walsh, I., K. Fischer, D. Murray & J. Dymond, 1988. Evidence for resuspension of rebound particles from near-bottom sediment traps. Geochim. Cosmochim. Acta: 59–70.

  • Wright, R. F., A. Matter, M. Schweingruber & U. Siegenthaler, 1980. Sedimentation in Lake Biel, an eutrophic hard-water lake in northwestern Switzerland. Schweiz. Z. Hydrobiol. 42: 101–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santschi, P.H. Use of radionuclides in the study of contaminant cycling processes. Hydrobiologia 176, 307–320 (1989). https://doi.org/10.1007/BF00026565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026565

Key words

Navigation