Skip to main content
Log in

An empirical model for sediment resuspension in shallow lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Suspended solids concentrations were measured at routine 2–3 week intervals and on additional windy days for at least one year in each of seven shallow (mean depth < 2 m) south Island, New Zealand lakes. Surface wave characteristics were estimated from water depths and local meteorological data using a shallow-water wave forecasting model for fetch-limited waves. Bottom shear stresses were computed from surface wave characteristics for the sampling stations and for a hypothetical lake-average station. The calculated shear stresses were, on average, much better predictors of suspended solids concentrations than alternative models using two different functions of wind speed, wave height2/depth or wavelength/depth. A combination of the sample station and lake average shear stresses provided slightly better predictions than the sample station values alone, suggesting that currents also contribute significantly to the concentration at a given point. Regressions of suspended solids on the combined functions had r 2 values ranging from 0.74–0.73 in the seven lakes. The slopes of these regressions were negatively related to the settling velocity of the lowest quartile of the sediment, and to macrophyte biomass, in multiple regression (r 2 = 0.94, p < 0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalderink, R. H., L. Lijklema, J. Breukelman, W. van Raaphorst & A. G. Brinkman, 1984. Quantification of wind induced resuspension in a shallow lake. Wat. Sci. Technol. 17: 903–914.

    Google Scholar 

  • Barica, J., 1974. Extreme fluctuations in water quality of eutrophic fish kill lakes: effect of sediment mixing.Water Res. 8: 881–888.

    Google Scholar 

  • Bengtsson, L. & T. Hellström, 1992. Wind resuspension in a small shallow lake. Hydrobiologia 241: 163–172.

    Google Scholar 

  • Bengtsson, L., T. Hellström & L. Rakoczi, 1990. Redistribution of sediments in three Swedish lakes. Hydrobiologia 192: 167–181.

    Google Scholar 

  • Bennett, J. R., 1974. On the dynamics of wind-driven lake currents. J. Phys. Oceanogr. 4: 400–414.

    Google Scholar 

  • Bruton, M. N., 1985. The effect of suspensoids on fish. Hydrobiologia 125: 221–241.

    Google Scholar 

  • Carper, G. L. & R. W. bachmann, 1984. Wind resuspension of sediments in a prairie lake. Can. J. Fish. Aquat. Sci. 41: 1763–1767.

    Google Scholar 

  • Cavanié, A. G. 1980. Evaluation of standard error in the estimation of mean and significant wave heights as well as mean period from records of finite length. In: Climatologie de la Mer; Sea Climatology, pp. 73–78. Editions Technip.

  • CERC, 1973. Shore protection manual, Vol. I. U. S. Army Coastal Eng. Res. Center, Ft. Belvoir, Va.

    Google Scholar 

  • CERC, 1977. Shore protection manual. Vol. I. U. S. Army Coastal Eng. Res. Center, Ft. Belvoir, Va.

    Google Scholar 

  • Cole, P. & G. V. Miles, 1983. Two-dimensional model of mud transport. J. Hydraul. Eng., ASCE 109: 1–12.

    Google Scholar 

  • Dyer, K. R., 1986. Coastal and estuarine sediment dynamics. Wiley: 342 pp.

  • Einstein, H. A. & R. B. Krone, 1962. Experiments to determine modes of cohesive sediment transport in salt water. J. Geophys. Res. 67: 1451–1461.

    Google Scholar 

  • Fukuda, M. K. & W. Lick, 1980. The entrainment of cohesive sediments in freshwater. J. Geophys. Res. 85: 2813–1824.

    Google Scholar 

  • Gerbeaux, P. J., 1989. Aquatic plant decline in Lake Ellesmere. Unpubl. Ph. D. Thesis, Lincoln College, New Zealand: 276 pp.

    Google Scholar 

  • Gerbeaux, P. J. & J. Ward, 1986. The disappearance of marcrophytes and its importance in the management of shallow lakes in New Zealand. In: Proc. European Weed Res. Soc., 7th Symposium on Aquatic Weeds, pp. 119–124.

  • Gons, H. J., R. Veeningen & R. van Keulen, 1986. Effects of wind on a shallow lake ecosystem: resuspension of particles in the Loosdrecht Lakes. Hydrobiol. Bull. 20: 109–120.

    Google Scholar 

  • Håkanson, L., 1977. The influence of wind, fetch and water depth on the sediments in Lake Vånern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Google Scholar 

  • Håkanson, L>, 1981. On lake bottom dynamics — the energy-topography factor. Can. J. Earth. Sci. 18: 899–909.

    Google Scholar 

  • Håkanson, L., 1982. Bottom dynamics in lakes. Hydrobiologia 91: 9–22.

    Google Scholar 

  • Hamilton, D. P., 1990. Sediment resuspension by wind in shallow lakes. Unpubl. Ph. D. thesis. University of Otago, New Zealand: 249 pp.

    Google Scholar 

  • Hamilton, D. P. & S. F. Mitchell, 1988. Effects of wind on nitrogen, phophorous, and chlorophyll in a shallow New Zealand lake. Verh. Internat. Verein. Limnol. 23: 624–628.

    Google Scholar 

  • Hawley, N. & B. M. Lesht, 1992. Sediment resuspension in Lake St. Clair. Limnol. Oceanogr. 37: 1720–1737.

    Google Scholar 

  • Ijima, T. & F. L. W. Tang, 1966. Numerical calculation of wind waves in shallow water. In Proc. 10th Int. Conf. Coastal Eng., ASCE. pp. 38–48. Tokyo.

    Google Scholar 

  • Irwin, J., 1979.Lake Forsyth bathymetry. N.Z. Oceanographic Inst. Rep., DSIR, N.Z.

    Google Scholar 

  • Irwin, J., W. Del Main & M. W. Burrows, 1988. Bathymetric survey of Lake Ellesmere. N.Z. Ocenaographic Inst. Rep., DSIR, N.Z.

    Google Scholar 

  • James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperature reservoir. Arch. Hydrobiol. 120: 129–142.

    Google Scholar 

  • Jupp, B. P. & D. H. N. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven. 2. Wave action, sediments and waterfowl grazing. J. Ecol. 65: 431–436.

    Google Scholar 

  • Kachel, N. B. & R. W. Sternberg, 1971. Transport of bedload as ripples during an ebb current. Mar Geol. 10: 229–244.

    Google Scholar 

  • Knowles, C. E., 1982. On the effects of finite depth on wind-wave spectra: 1. A comparison with deep-water equilibrium-range slope and other spectral parameter. J. Phys. Oceanogr. 12: 556–568.

    Google Scholar 

  • Komar, P. D. & M. C. Miller, 1975. On the comparison between the threshold of sediment motion under waves and unidirectional currents with a discussion of the practical evaluation of the threshold. J. Sed. Petrol. 45: 362–367.

    Google Scholar 

  • Kristensen, P., M. Søndergaard and E. Jeppesen, 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia. 228: 101–109.

    Google Scholar 

  • Lam, D. C. L. & J.-M. Jaquet, 1976. Computations of physical transport and regeneration of phosphorous in Lake Erie, fall 1970. J. Fish. Res. Bd. Can. 33: 550–563.

    Google Scholar 

  • Lavelle, J. W., H. O. Mofjeld & E. T. Baker, 1984. An in situ erosion rate for fine-grained marine sediment. J. Geophys. Res. 89: 6543–6552.

    Google Scholar 

  • Lick, W., 1982. Entrainment, deposition and transport of fine sediments in lake. Hydrobiologia 91: 31–40.

    Google Scholar 

  • Livingstone, M. E., B. J. Biggs & J. S. Gifford, 1986. Inventory of New Zealand lakes. Part II, South Island, Water and Soil Publ. 81: 193 pp.

  • Lonsdale, P. & J. B. Southard, 1974. Experimental erosion of North Pacific red clay. Mar. Geol. 17: M51-M60.

    Google Scholar 

  • Luettich, R. A., Jr., D. R. F. Harleman & L. Somlyódy, 1990. Dynamic behavior od suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnol. Ocenogr. 35: 1050–1067.

    Google Scholar 

  • McKinnon, S. L. C., 1989. The interrelationship between phytoplankton, submerged macrophytes and black swans (Cygnus atratus) in New Zealand lakes — test of two models, Unpubl. M.Sc. thesis, University of Otago, New Zealand: 74 pp.

    Google Scholar 

  • McKinnon, S. L. C. & S. F. Mitchell, 1994. Eutrophication and black swan (Cygnus atratus Latham) populations: test of two sample relationships. Hydrobiologia 279–280 (Dev. Hydrobiol. 96): 163–170.

    Google Scholar 

  • Mehta, A. J., T. M. Parchure, J. G. Dixit & R. Ariathurai, 1982. Resuspension potential of deposited cohesive sediment beds. In V. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York: 591–609.

    Google Scholar 

  • Mitchell, S. F., 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquat. Bot. 33: 101–110.

    Google Scholar 

  • N.Z. Meteorological Service, 1987. Meterological observations for 1987. Misc. Pub. N.Z. Met. S. 109: 104 pp.

  • Partheniades, E., 1965. Erosion and deposition of cohesive soils. J. Hydraul. Div., ASCE 91: 105–139.

    Google Scholar 

  • Phillips, G. L., O. Ominson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiology 200/201 (Dev. Hydrobiol. 61): 475–486.

    Google Scholar 

  • Scheffer, M. S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Google Scholar 

  • Sheng, Y. P., 1979. Modelling sediment transport in a shallow lake. In: P. Hamilton & K. B. Macdonald (eds.), Estuarine and Wetland Processes, pp 299–237. Plenum Press, N. Y.

    Google Scholar 

  • Sheng, Y. P. & W. Lick, 1979. The transport and resuspension of sediments in a shallow lake. J. Geophys. Res. 84: 1809–1826.

    Google Scholar 

  • Smith, I.R., 1979. Hydraulic conditions in isothermal lakes. Freshwat. Biol. 9: 119–145.

    Google Scholar 

  • Somlyódy, L., 1981. Modelling complex environmental system: The Lake Balaton study. WP-81–108, IIASA, Laxenburg, Austria: 14–19.

    Google Scholar 

  • Somlyódy, L., 1982. Water-quality modelling: a comparison of transport oriented and ecology oriented approaches. Ecol. Modelling 17: 183–207.

    Google Scholar 

  • Sonlyódy, L., 1986. Wind induced sediment resuspension in shallow lakes. In: Water Quality Modelling in the Inland Natural Environment, pp. 287–298. The Fluid Engineering Centre, England.

    Google Scholar 

  • Vlag, D. P., 1992. A model for predicting waves and suspended silt concentration in a shallow lake. Hydrobiologia 235/236 (Dev. Hydrobiol. 75): 119–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, D.P., Mitchell, S.F. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317, 209–220 (1996). https://doi.org/10.1007/BF00036471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036471

Key words

Navigation