Skip to main content
Log in

Nonlinear dynamics of oriented elastic solids

II. Propagation of solitons

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Based on a continuum model for oriented elastic solids the set of nonlinear dispersive equations derived in Part I of this work allows one to investigate the nonlinear wave propagation of the soliton type. The equations govern the coupled rotation-displacement motions in connection with the linear elastic behavior and large-amplitude rotations of the director field. In the one-dimensional version of the equations and for two simple configurations an exhaustive study of solitons is presented. We show that the transverse and/or longitudinal elastic displacements are coupled to the rotational motion so that solitons, jointly in the rotation of the director and the elastic deformations, are exhibited. These solitons are solutions of a system of linear wave equations for the elastic displacements which are nonlinearly coupled to a sine-Gordon equation for the rotational motion. For each configuration, the solutions are numerically illustrated and the energy of the solitions is calculated. Finally, some applications of the continuum model and the related nonlinear dynamics to several physical situations are given and additional more complex problems are also evoked by way of conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pouget and G.A. Maugin: Nonlinear dynamics of oriented elastic solids. I. Basic equations.J. Elas. 22 (1989) 135–155.

    Google Scholar 

  2. A.C. Scott, F.Y.F. Chu and D.W. McLaughlin: The soliton: a new concept in applied science.Proceeding of the IEEE 61 1443–1483 (1973).

    Google Scholar 

  3. A.C. Newell: The history of the soliton.Transaction of the ASME J. of Appl. Mech. 50 (1983) 1127–1138.

    Google Scholar 

  4. G.L. LambJr and D.W. McLaughlin: Aspects of soliton physics. In: R.K. Bullough and P.J. Caudrey (eds),Topics in Current Physics 17, “Solitons”. Berlin: Springer-Verlag (1980) pp. 65–106.

    Google Scholar 

  5. R.K. Bullough: Solitons in physics. In: A.O. Barut (ed.),Nonlinear Equations in Physics and Mathematics. Dordrecht: Reidel Publishing Company (1978) pp. 99–141.

    Google Scholar 

  6. S. Pnevmatikos: Solitons in nonlinear atomic chains. In: S. Pnevmatikos (ed.),Math. Studies 103, Proceeding Inter. Conf. “Singularities and Dynamical Systems” Amsterdam: North-Holland (1985) pp. 397–437.

    Google Scholar 

  7. R.H. Enns, B.L. Jones, R.M. Miura and S.S. Rangnekar: Nonlinear phenomena in physics and biology. In:NATO Adv. Study Inst. Series 75. New York: Plenum Press (1981).

    Google Scholar 

  8. G.L. LambJr.:Elements of Soliton Theory. Pure and Applied Mathematics-a Wiley-Interscience Series of Texts, Monographs and Tracts. New York: John Wiley & Sons (1980).

    Google Scholar 

  9. F. Calogero and A. Degasperis: Special transform and solitons I. In:Studies in Mathematics and its Applications, 13. Amsterdam: North-Holland (1982).

    Google Scholar 

  10. R.M. Miura: An introduction to solitons and the inverse scattering method via the Kortewegde Vries Equation. In: K. Lonngren and A. Scott (eds),Solitons in Actions. New York: Academic Press (1978) pp. 1–20.

    Google Scholar 

  11. L.P. Eisenhart:A Treatise on the Differential Geometry of Curves and Surfaces. New York: Dover Publications, Inc. (1909).

    Google Scholar 

  12. R. Hirota: Direct methods in soliton theory. In: R.K. Bullough and P.J. Caudrey (eds),Topics in Current Physics 17. Solitons, Berlin: Springer-Verlag (1980) pp. 157–176.

    Google Scholar 

  13. E. Magyari: The inertia mode of the mechanically generated solitons in nematic liquid crystals.Z. Phys. B.-Condensed Matter 56 (1984) 1–3.

    Google Scholar 

  14. J.L. Skinner and R.G. Wolynes: Transition state and Browniaan motion theories of solitons.J. Chem. Phys. 73 (1980) 4015–4021.

    Google Scholar 

  15. K.J. Wahlstrand and P.G. Wolynes: Simulation of a relativistic soliton model of crystalline polymer dynamics.J. Chem. Phys. 82 (1985) 5259–5263.

    Google Scholar 

  16. J. Pouget and G.A. Maugin: Solitons and electroacoustics interactions in ferroelectric crystals. I-Single solitons and domain walls-Phys. Rev. B 30, 5306–5325 (1984). II-Interactions between solitons.ibid. B31, 4633–4651 (1985).

    Google Scholar 

  17. S. Yomosa: Solitary excitations in DNA double helices. In: S. Takeno (ed.),Springer Series in Synergetics, Vol. 30, Dynamical Problems in Soliton Systems. Berlin: Springer-Verlag (1985) pp. 242–247.

    Google Scholar 

  18. R.F. Sooho:Magnetic Thin Films. New York: Harper and Row (1965).

    Google Scholar 

  19. G.A. Maugin and A. Miled: Solitary waves in elastic ferromagnets.Phys. Rev. B 33 (1986) 4830–4842.

    Google Scholar 

  20. J.F. Nye:Physical Properties of Crystals. Oxford: Clarendon Press (1957).

    Google Scholar 

  21. Ph.B. Burt: Exact, multiple soliton solutions of the double sine-Gordon equation.Proc. R. Soc. Lond. A. 359 (1978) 479–495.

    Google Scholar 

  22. R.K. Dodd, R.K. Bullough and S. Duckworth: Multisoliton solutions of nonlinear dispersive wave equations not soluble by the inverse method.J. Phys. A-Math Gen. 8 (1975) L64-L68.

    Google Scholar 

  23. C.A. Condat, R.A. Guyer and M.D. Miller: Double sine-Gordon chain.Phys. Rev. B 27 (1983) 474–494.

    Google Scholar 

  24. R.K. Bullough, P.J. Caudrey and H.M. Gibbs: The double sine-Gordon equations: a physically applicable system of equations. In: R.K. Bullough and P.J. Caudrey (eds),Topics in Current Physics, Vol. 17, Solitons. Berlin: Springer-Verlag (1980) pp. 107–141.

    Google Scholar 

  25. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon and H.C. Morris:Solitons and Nonlinear Wave Equations. London: Academic Press (1982).

    Google Scholar 

  26. J. Pouget and G.A. Maugin: Coupled acoustic-optic modes in deformable ferroelectrics.J. Acoust. Soc. Am. 68 (1980) 588–601.

    Google Scholar 

  27. A. Barone, F. Esposito, G.J. Magee and A.C. Scott: Theory and application of the sine-Gordon equation.Rivista Del Naovo Cimento 1 (1971) 227–267.

    Google Scholar 

  28. A.J. Callegar and E.L. Reiss: Nonlinear stability problem for the sine-Gordon equation.J. Math. Phys. 14 (1973) 267–276.

    Google Scholar 

  29. M. Remoissenet: Nonlinear excitations in a compressible chain of dipoles.J. Phys. C: Solid State Physics 14 (1981) L335-L338.

    Google Scholar 

  30. M. Cieplak and L.A. Turski: Magnetic solitons and elastic kink-like excitations in compressible Heisenberg chain.J. Phys. C: Solid State Phys. 13 (1980) L777–780.

    Google Scholar 

  31. J. Fivez: On the continuum limit of a classical compressible Heisenberg chain.J. Phys. C.: Solid State Phys. 15 (1982) L641-L643.

    Google Scholar 

  32. Z. Wesolowski: Dynamics of a bar of asymmetric cross section.J. Engng. Math. 17 (1983) 315–321.

    Google Scholar 

  33. G.A. Maugin and A. Miled: Solitary waves in micropolar elastic crystals.Int. J. Engng. Sci. 24 (1986) 1477–1499.

    Google Scholar 

  34. G.A. Maugin and J. Pouget: Solitons in microstructured elastic media: physical and mechanical aspects. In: A.J.M. Spencer (ed.),Proceeding of the 5th International Symposium on Continuum Models of Discrete Systems, Nottingham, U.K., 14–20 July 1985. Rotterdam: A.A. Balkema (1987) pp. 115–137.

    Google Scholar 

  35. Y. Ishibashi and H. Shiba: Successive phase transitions in ferroelectric NaNO2 and SC(NH2)2.J. Phys. Soc. Jpn. 45 (1978) 409–413.

    Google Scholar 

  36. D. Durand, F. Denoyer, D. Lefur, R. Currat and L. Bernard: Neutron diffraction study of sodium nitrite in an applied electric field.J. Physique Lettres 44 (1983) L207-L216.

    Google Scholar 

  37. S. Suzuki and M. Takagi: Topographic study on ferroelectric NaNO2 crystals. I. Structure of 180° domain walls.J. Phys. Sc. Jpn. 30 (1971) 188–202.

    Google Scholar 

  38. S. Suzuki and M. Takagi: Topographic study on ferroelectric NaNO2 crystals. II. Mechanisms of polarization reversal.J. Phys. Soc. Jpn. 32 (1972) 1302–1312.

    Google Scholar 

  39. W. Kinase, W. Makino and K. Takahashi: Theory of the domain wall in NaNO2 and the relation with the incommensurate structure.Ferroelectrics 64 (1985) 173–180.

    Google Scholar 

  40. K.H. Michel and J. Naudts: Dynamics of translations and rotations in molecular crystals.J. Chem. Phys. 68 (1978) 216–228.

    Google Scholar 

  41. K.H. Michel and E. Courtens: Dynamics of translations and rotations in molecular crystals: Macroscopic and microscopic approaches.Phys. Rev. B 23 (1981) 513–522.

    Google Scholar 

  42. J. Naudts and R.H. Michel: Lattice dynamics of a partially disordered crystal: a simple model.Phys. Rev. B 18 (1978) 667–673.

    Google Scholar 

  43. H. Dvey-Aharon, T.J. Sluckin, P.L. Taylor and A.J. Hopfinger: Kink propagation as a model for poling in poly (vinylidene fluoride).Phys. Rev. B 21 (1980) 3700–3707.

    Google Scholar 

  44. K.J. Wahlstrand: Computer simulation studies of soliton models for dielectric relaxation in crystalline polyethylene and related polymers. I. Continuum and pinned limits.J. Chem. Phys. 82 (1985) 5247–5258.

    Google Scholar 

  45. P.L. Taylor and A. Banerjea: Incommensurate phases in a simple polymer.Ferroelectrics 66 (1986) 135–142.

    Google Scholar 

  46. S. Takeno and S. Homma: Topological solitons and modulated structure of bases in DNA Double Helices.Prog. Theor. Phys. 70 (1983) 308–311.

    Google Scholar 

  47. S. Yomosa: Soliton excitations in deoxyribonucleic acid (DNA) double helices.Phys. Rev. A 27 (1983) 2120–2125.

    Google Scholar 

  48. A.C. Scott: Biological solitons. In: S. Takeno (ed.),Dynamical Problems in Soliton Systems. Proceedings of the 7th Kyoto Summer Institute, Kyoto, Japan, 27–31 August. Berlin: Springer-Verlag (1985) pp. 324–335.

    Google Scholar 

  49. M. Peyrard and D.K. Campbell: Kink-antikink interactions in a modified sine-Gordon model.Physica 9D (1983) 33–51.

    Google Scholar 

  50. D.K. Campbell, M. Peyrard and P. Sodano: Kink-antikink interactions in the double sine-Gordon equation.Physica 19D (1986) 165–205.

    Google Scholar 

  51. J. Pouget and G.A. Maugin: Influence of an external electric field on the motion of a ferroelectric domain wall.Phys. Lett. 109A (1985) 389–392.

    Google Scholar 

  52. J. Pouget: Transient motion of a solitary wave in elastic ferroelectrics. In: E. Kröner and K. Kirchgässner (eds),Lecture Notes in Physics 249. Trends in Applications of Pure Mathematics to Mechanics. Berlin: Springer-Verlag (1985) pp. 156–163.

    Google Scholar 

  53. A.R. Bishop and P.S. Lomdahl: Nonlinear dynamics in driven, damped sine-Gordon systems.Physica 18D (1986) 54–66.

    Google Scholar 

  54. J. Pouget: Some problems of solitons relating to microscopic and continuum approaches of microstructured media.MIDIT Workshop on Structure, Coherence and Chaos in Dynamical Systems. Lyngby, Denmark, Aug. 1986.

  55. A.R. Bishop, R. Eykholt and E.A. Overman: Space-time complexity in solid-state and statistical physics model. In: E. Kröner and K. Kirchgässner (eds),Lecture Notes in Physics 249.Trends in Applications of Pure Mathematics to Mechanics. Berlin: Springer-Verlag (1986) pp. 79–101.

    Google Scholar 

  56. G. Leibbrandt, R. Morf and Shein-Shion Wang: Solutions of the sine-Gordon equation in higher dimensions.J. Math. Phys. 21 (1980) 1613–1624.

    Google Scholar 

  57. S. Takeno: Multi-(Resonant-soliton)-soliton solutions and Vortex-like solutions to two-and three-dimensional sine-Gordon equations.Prog. Theor. Phys. 68 (1982) 992–995.

    Google Scholar 

  58. P.L. Christiansen and P.S. Lomdahl: Numerical study of 2+1 dimensional sine-Gordon solitons.Physica 2D (1981) 482–494.

    Google Scholar 

  59. P. Kumar: Soliton instability in an easy plane ferromagnet.Physica 5D (1982) 359–369.

    Google Scholar 

  60. K.M. Leung: Mechanical properties of double sine-Gordon solitons and the application of anisotropic Heisenberg ferromagnetic chain.Phys. Rev. B 27 (1983) 2877–2888.

    Google Scholar 

  61. G. Wysin, A.R. Bishop and P. Kumar: Soliton dynamics of an easy-plane ferromagnetic chain.J. Phys. C: Solid State Phys. 17 (1984) 5975–5991.

    Google Scholar 

  62. G.M. Wysin, A.R. Bishop and J. Oitmaa: Single-kink dynamics in an easy plane classical antiferromagnetic chain.J. Phys. C: Solid State Phys. 19 (1986) 221–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouget, J., Maugin, G.A. Nonlinear dynamics of oriented elastic solids. J Elasticity 22, 157–183 (1989). https://doi.org/10.1007/BF00041109

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041109

Keywords

Navigation