Skip to main content
Log in

On Saint-Venant's principle in linear elastodynamics

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We investigate the spatial behaviour of the steady state and transient elastic processes in an anisotropic elastic body subject to nonzero boundary conditions only on a plane end. For the transient elastic processes, it is shown that at distance x 3 >ct from the loaded end, (c is a positive computable constant and t is the time), all the activity in the body vanishes. For x 3 <ct, an appropriate measure of the elastic process decays with the distance from the loaded end, the decay rate of end effects being controlled by the factor % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaKazaaiacaGGOaGccaaIXaGaaeiiaiabgkHiTiaabccadaWcaaqa% amXvP5wqonvsaeHbfv3ySLgzaGqbciab-Hha4naaBaaaleaacaqGZa% aabeaaaOqaaiaabogacaqG0baaaKazaakacaGGPaaaaa!4BB0!\[(1{\text{ }} - {\text{ }}\frac{{x_{\text{3}} }}{{{\text{ct}}}})\]. Next, it is shown that for isotropic materials, in the case of a steady state vibration, an analogue of the Phragmén-Lindelöf principle holds for an appropriate cross-sectional measure. One immediate consequence is that in the class of steady state vibrations for which a quasi-energy volume measure is bounded, this measure decays at least algebraically with the distance from the loaded end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Toupin, Saint-Venant's principle. Arch. Rational Mech. Anal. 18 (1965) 83–96.

    Google Scholar 

  2. J.K. Knowles, On Saint-Venant's principle in the two-dimensional linear theory of elasticity. Arch. Rational Mech. Anal. 21 (1966) 1–22.

    Google Scholar 

  3. M.E. Gurtin, The linear theory of elasticity. In: C. Truesdell (ed.), Encyclopedia of Physics, Vol. VIa/2, Mechanics of Solids II. Springer, Berlin/Heidelberg/New York (1972).

    Google Scholar 

  4. C.O. Horgan and J.K. Knowles, Recent developments concerning Saint-Venant's principle. In: J.W. Hutchinson (ed.), Advances in Applied Mechanics, Vol. 23. New York: Academic Press, (1983), pp. 179–269.

    Google Scholar 

  5. C.O. Horgan, Recent developments concerning Saint-Venant's principle: an update. Applied Mechanics Reviews 42 (1989) 295–303.

    Google Scholar 

  6. B.A. Boley, Some observations on Saint-Venant's principle. In: Proc. 3rd U.S. Nat. Cong. Appl. Mech., ASME, New York (1958), pp. 259–264.

    Google Scholar 

  7. B.A. Boley, Upper bounds and Saint-Venant's principle in transient heat conduction. Quart. Appl. Math. 18 (1960) 205–207.

    Google Scholar 

  8. W.S. Edelstein, A spatial decay estimate for the heat equation. Z. angew. Math. Phys. 20 (1969) 900–905.

    Google Scholar 

  9. J.K. Knowles, On the spatial decay of solutions of the heat equation. Z. angew. Math. Phys. 22 (1971) 1050–1056.

    Google Scholar 

  10. C.O. Horgan, L.E. Payne and L.T. Wheeler, Spatial decay estimates in transient heat conduction. Quart. Appl. Math. 42 (1984) 119–127.

    Google Scholar 

  11. S. Chiriţă, On the spatial decay estimates in certain time-dependent problems of continuum mechanics. Archives of Mechanics 47 (1995) 755–771.

    Google Scholar 

  12. V.G. Sigillito, On the spatial decay of solutions of parabolic equations. Z. angew. Math. Phys. 21 (1970) 1078–1081.

    Google Scholar 

  13. J.W. Nunziato, On the spatial decay of solutions in the nonlinear theory of heat conduction. J. Math. Anal. Appl. 48 (1974) 687–698.

    Google Scholar 

  14. C.O. Horgan and L.T. Wheeler, Spatial decay estimates for the heat equation via the maximum principle. Z. angew. Math. Phys. 27 (1976) 371–376.

    Google Scholar 

  15. C.O. Horgan and L.T. Wheeler, On maximum principles and spatial decay estimates for heat conduction. In: Proceedings of the Twelfth Annual Meeting, Society of Engineering Science, University of Texas, Austin, University of Texas Press, Austin (1975), pp. 331–339.

    Google Scholar 

  16. C.O. Horgan and L.T. Wheeler, A spatial decay estimate for pseudoparabolic equations. Lett. Appl. Eng. Sci. 3 (1975), 237–243.

    Google Scholar 

  17. J.N. Flavin and R.J. Knops, Some spatial decay estimates in continuum dynamics. J. Elasticity 17 (1987) 249–264.

    Google Scholar 

  18. J.N. Flavin, R.J. Knops and L.E. Payne, Energy bounds in dynamical problems for a semi-infinite elastic beam. In: G. Eason and R.W. Ogden (eds), Elasticity: Mathematical Methods and Applications, Ellis-Horwood, Chichester (1990), pp. 101–111.

    Google Scholar 

  19. S. Chiriţă, Spatial decay estimates for solutions describing harmonic vibrations in a thermoelastic cylineer. J. Thermal Stresses 18 (1995) 421–436.

    Google Scholar 

  20. D. Ieşan and R. Quintanilla, Decay estimates and energy bounds for porous elastic cylinders. Z. angew. Math. Phys. 46 (1995) 268–281.

    Google Scholar 

  21. R. Quintanilla, A spatial decay estimate for the hyperbolic heat equation. SIAM Jour. Math. Anal., in press.

  22. S. Chiriţă, Saint-Venant's principle in elastodynamics. J. Math. Phys. Sciences, in press.

  23. S. Chiriţă, Saint-Venant's principle in linear thermoelasticity. J. Thermal Stresses 18 (1995) 485–496.

    Google Scholar 

  24. R. Quintanilla, Spatial decay estimates for cone-like shaped elastic solids. To appear.

  25. R. Quintanilla, Spatial decay estimates for cone-like shaped elastic solids. To appear.

  26. P.J. Olver, Applications of Lie Groups to Differential Equations. Springer-Verlag, Berlin (1986).

    Google Scholar 

  27. M.M. Mehrabadi, S.C. Cowin and C.O. Horgan, Strain energy density bounds for linear anisotropic elastic materials. J. Elasticity 30 (1993) 191–196.

    Google Scholar 

  28. R.J. Knops, S. Rionero and L.E. Payne, Saint-Venant's principle on unbounded regions. Proc. Roy. Soc. Edinburgh 115A (1990) 319–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirită, S., Quintanilla, R. On Saint-Venant's principle in linear elastodynamics. J Elasticity 42, 201–215 (1996). https://doi.org/10.1007/BF00041790

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041790

Mathematics Subject Classifications (1991)

Key words

Navigation