Skip to main content
Log in

Application of an inclined-strip-yield crack tip plasticity model to predict constant amplitude fatigue crack growth

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A mathematical model for fatigue crack growth under arbitrarily varying cyclic loads based on the inclined-strip-yield superdislocation representation of crack tip plasticity was initiated in previous work. The results showed promise, but also exhibited some deficiencies. Steps to improve the general model using a heuristic model (in which the superdislocation pairs representing the residual plasticity left behind by a crack growing under constant amplitude loading are lumped into one aggregate pair) are described in this paper. It is shown that this simple model matches the main features of experimental observations on fatigue crack growth. While pointing the way to developing a practical model to treat spectrum loading, the results also offer some potentially valuable insights into the analysis of plasticity-enhanced fatigue crack growth. Of most significance, the results suggest that the compressive stress acting at a crack tip due to residual plasticity may be inseparably linked with crack closure. The generality of the model is also demonstrated by applications to biaxial and crack line loading conditions.

Résumé

Dans un travail précédent, on a présenté un modèle mathématique décrivant la croissance d'une fissure de fatigue sous charges cycliques variant de façon arbitraire, en se basant sur une représentation de la plasticité à l'extrémité de la fissure en une superdislocation associée à des écoulements plastiques en bandes suivant une certaine inclinaison. Ces résultats semblaient prometteurs, encore que révélant certaines faiblesses. Le mémoire décrit les étapes parcourues pour améliorer le modèle général en recourant à un modèle heuristique. Dans ce dernier, les paires de superdislocations représentant la plasticité résiduelle qui demeure après croissance de la fissure sous amplitude de charge variable, sont réunies en une seule paire. On montre que ce modèle simplifié rend compte des caractéristiques principales de la croissance des fissures de fatigue, telles qu'elles ressortent des observations expérimentales. Les résultats indiquent la voie à suivre pour développer un modèle pratique décrivant le cas de la sollicitation suivant un spectre de charges. Ils ouvrent également des perspectives intéressantes dans l'analyse de la croissance d'une fissure de fatigue activée par l'entrée en plasticité. Mais, par dessus tout, ils suggèrent que la contrainte de compression due à la plasticité résiduelle et agissant à l'extrémité de la fissure peut être indissolublement liée à la fermeture de la fissure. Des applications à des conditions de mise en charge biaxiale, ou à une sollicitation concentrée sur la fissure elle même, démontrent les généralisations possibles du modèle étudié.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Broek, Elementary Engineering Fracture Mechanics, Noordhoff International Publishing, Leyden, The Netherlands (1974).

    Google Scholar 

  2. N.E. Frost, K.J. Marsh and L.P. Pook, Metal Fatigue, Clarendon Press, Oxford (1974).

    Google Scholar 

  3. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York (1976).

    Google Scholar 

  4. S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures, Prentice-Hall, Englewood Cliffs, New Jersey (1977).

    Google Scholar 

  5. D.V. Nelson, Experimental Mech., Feb. 1977.

  6. A.H. Purcell, Ind. Research, 19 (1977) 81.

    Google Scholar 

  7. T.W. Crooker, Mechanical Engineering, June 1977.

  8. M.F. Kanninen, C. Atkinson and C.E. Feddersen, “A Fatigue Crack-Growth Analysis Method Based on a Simple Representation of Crack-Tip Plasticity” in Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, ASTM-STP 637 (1977) 122.

  9. C. Atkinson and M.F. Kanninen, International Journal of Fracture, 13 (1977) 151.

    Google Scholar 

  10. A.J. McEvily and J. Groeger, “On the Threshold for Fatigue-Crack Growth” in Proceedings of the 4th International Conference on Fracture, Vol. 2, University of Waterloo Press (1977) 1293.

  11. A.J. McEvily, D. Bunkelmann and K. Tanaka, “Effect of Large-Scale Yielding on Fatigue Crack Propagation”, Strength and Structure of Solid Materials, Noordhoff International Publishing, Leyden (1976) 275.

    Google Scholar 

  12. E.F.J.von Euw, R.W. Hertzberg and R. Roberts, “Delay Effects in Fatigue-Crack Propagation” in Stress Analysis and Growth of Cracks, ASTM STP 513, American Society for Testing Materials, Philadelphia (1972) 230.

    Google Scholar 

  13. C. Atkinson and T.R. Kay, Acta Metallurgica 19 (1971) 679.

    Google Scholar 

  14. P. Neumann, Acta Metallurgica 22 (1974) 1167.

    Google Scholar 

  15. P. Neumann, H. Vehoff and H. Fuhbrott, “On the Mechanisms of Fatigue Crack Growth” in Proceedings of the 4th International Conference on Fracture, Vol. 2, University of Waterloo Press (1977) 1293.

  16. W. Elber, “The Significance of Fatigue Crack Closure” in Damage Tolerance in Aircraft Structures, ASTM STP 406, American Society for Testing Materials, Philadelphia (1971) 230.

    Google Scholar 

  17. K.J. Miller, Metal Science, Aug/Sept. (1977) 432.

  18. J.T. Evans, Acta Metallurgica 25 (1977) 805.

    Google Scholar 

  19. P.C. Paris and L. Herman, “Measurements and Analytical Models for Crack Closure in Fatigue”, 14th IUTAM Congress (1977).

  20. J.C. Newman, Jr. “Finite Element Analysis of Crack Growth Under Monotonic and Cyclic Loading” in Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, ASTM STP 637 (1977) 56.

  21. B. Budiansky and J.W. Hutchinson, Journal of Applied Mechanics 45 (1978) 267.

    Google Scholar 

  22. T. Yokobori, A.T. YokoboriJr. and A. Kamei, International Journal of Fracture 11 (1975) 781.

    Google Scholar 

  23. J. Lankford and F.N. Kusenberger, Philosophical Magazine 26 (1972) 1485.

    Google Scholar 

  24. K. Sadananda and P. Shahinian, International Journal of Fracture 13 (1978) 585.

    Google Scholar 

  25. T.T. Shih and R.P. Wei, Engineering Fracture Mechanics 6 (1974) 19.

    Google Scholar 

  26. T.T. Shih and R.P. Wei, International Journal of Fracture 13 (1977) 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanninen, M.F., Atkinson, C. Application of an inclined-strip-yield crack tip plasticity model to predict constant amplitude fatigue crack growth. Int J Fract 16, 53–69 (1980). https://doi.org/10.1007/BF00042385

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042385

Keywords

Navigation