Skip to main content
Log in

Symmetry classes for elasticity tensors

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Harmonic and Cartan decompositions are used to prove that there are eight symmetry classes of elasticity tensors. Recent results in apparent contradiction with this conclusion are discussed in a short history of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Backus, A geometrical picture of anisotropic elastic tensors. Reviews of Geophysics and Space Physics 8 (1970) 633–671.

    Google Scholar 

  2. R. Baerheim, Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 46 (1993) 391–419.

    Google Scholar 

  3. S. Bhagavantam and T. Venkatarayudu, Theory of Groups and its Application to Physical Problems. Academic Press, New York-London (1969).

    Google Scholar 

  4. J.P. Boehler, A.A. Kirillov, and E.T. Onat, On the polynomial invariants of the elasticity tensor. J. Elasticity 34 (1994) 97–110.

    Google Scholar 

  5. S.C. Cowin, Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42 (1989) 249–266.

    Google Scholar 

  6. S.C. Cowin, Optimization of the strain energy density in linear anisotropic elasticity. J. Elasticity 34 (1994) 45–68.

    Google Scholar 

  7. S.C. Cowin, On the number of distinct elastic constants associated with certain anisotropic elastic symmetries. Z. angew. Math. Phys. (ZAMP) 46 (Special Issue): (1995) S210-S224.

    Google Scholar 

  8. S.C. Cowin and M.M. Mehrabadi, On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40 (1987) 451–476.

    Google Scholar 

  9. S.C. Cowin and M.M. Mehrabadi, The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40 (1992) 1459–1471.

    Google Scholar 

  10. A. Danescu, An application of the trace formula to anisotropic nonlinear elasticity. To be published in: J. Elasticity.

  11. F.I. Fedorov, Theory of Elastic Waves in Crystals, Plenum Press, New York (1968).

    Google Scholar 

  12. R. Fieschi, Matter tensors in the crystallographic groups of cartesian symmetry. Physica 24 (1957) 972–976.

    Google Scholar 

  13. R. Fieschi and F.G. Fumi, Matter tensors in symmetrical systems. Nuovo Cimento 9 (1952) 739–756.

    Google Scholar 

  14. R. Fieschi and F.G. Fumi, High-order tensors in symmetrical systems. Nuovo Cimento 10 (1953) 865–882.

    Google Scholar 

  15. F.G. Fumi, Photoelasticity in crystals. Nuovo Cimento 9 (1952) 184–185.

    Google Scholar 

  16. V.L. German, Some theorems on anisotropic media. Doklady Akad. Nauk SSSR 48 (1945) 95–98. In Russian.

    Google Scholar 

  17. M. Golubitsky, I. Stewart and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory Vol. 2. Springer-Verlag, New York-Berlin (1985).

    Google Scholar 

  18. M.E. Gurtin, The linear theory of elasticity. In C. Truesdell, editor, Mechanics of Solids II volume VIa/2 of Handbüch der Physik, pages 1–295. Springer, Berlin (1972).

    Google Scholar 

  19. R.F.S. Hearmon, An Introduction to Applied Anisotropic Elasticity. Oxford University Press, London (1961).

    Google Scholar 

  20. C. Hermann, Tensoren und Kristallsymmetrie. Zeitschr. f. Kristallographie, 89 (1934) 32–48.

    Google Scholar 

  21. Y.-Z. Huo and G.Del Piero, On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor. J. Elasticity 25 (1991) 203–246.

    Google Scholar 

  22. H. Jagodinski, Kristallographie. In S. Flügge, editor, Kristallphysik I, volume VII/1 of Handbüch der Physik pages 1–103. Springer, Berlin (1955).

    Google Scholar 

  23. J.P. Jaric, On the conditions for the existence of a plane of symmetry for anisotropic elastic material. Mech. Res. Comm. 21 (1994) 153–174.

    Google Scholar 

  24. A.G. Khaktevich, The elastic constants of crystals. Kristallografiya 6 (1961) 700–703.

    Google Scholar 

  25. V.A. Koptsik and Yu. I. Sirotin, The symmetry of piezoeletric and elastic tensors and the symmetry of the physical properties of crystals. Kristallografiya 6 (1961) 766–768.

    Google Scholar 

  26. L.D. Landau and E.M. Lifshiz, Theory of Elasticity, volume 7 of Course of Theoretical Physics Pergamon Press, London (1959).

    Google Scholar 

  27. S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body Holden-Day Series in Mathematical Physics. Holden-Day, San Francisco (1963).

    Google Scholar 

  28. D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups Oxford University Press, Oxford (1940).

    Google Scholar 

  29. D.E. Littlewood, Invariant theory under orthogonal groups. Proc. Lond. Math. Soc. 50 (1949) 349–379.

    Google Scholar 

  30. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity University Press, Cambridge (1927).

    Google Scholar 

  31. M.M. Mehrabadi and S.C. Cowin, Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43 (1990) 15–41.

    Google Scholar 

  32. W. Miller, Symmetry Groups and their Applications Academic Press, New York-London (1972).

    Google Scholar 

  33. E. Mochizuki, Spherical harmonic decomposition of an elastic tensor. Geophysical Journal 93 (1988) 521–526.

    Google Scholar 

  34. E.T. Onat, Effective properties of elastic materials that contain penny shaped voids. Internat. J. Engrg. Sci. 22 (1984) 1013–1021.

    Google Scholar 

  35. J.F. Pierce, Representations for transversely hemitropic and transversely isotropic stress-strain relations. J. Elasticity 37 (1995) 243–280.

    Google Scholar 

  36. P. Podio-Guidugli and M. Vianello, Internal constraints and linear constitutive relations for transversely isotropic materials. Rend. Mat. Acc. Lincei 2 (1991) 241–248.

    Google Scholar 

  37. J. Rychlewski, Unconventional approach to linear elasticity. Arch. Mech. 47 (1995) 149–171.

    Google Scholar 

  38. J.A. Schouten, Der Ricci-Kalkül Springer, Berlin (1924).

    Google Scholar 

  39. J.A. Schouten, Tensor Analysis for Physicists Oxford University Press, London (1951).

    Google Scholar 

  40. J.A. Schouten, Ricci-Calculus Springer, Berlin (1954).

    Google Scholar 

  41. I.R. Shafarevich, Basic notions of algebra. In A.I. Kostrikin and I.R. Shafarevich, editors, Algebra I, volume 11 of Encyclopaedia of Mathematical Sciences pages 1–258. Springer, Berlin (1990).

    Google Scholar 

  42. Yu.I. Sirotin, Group tensor spaces. Kristallografiya 5 (1960) 157–320.

    Google Scholar 

  43. C. Somigliana, Sulla legge di razionalità rispetto alle proprietà elastiche dei cristalli. Atti Reale Accad. Naz. Lincei (Rend.) 3 (1894) 238–246.

    Google Scholar 

  44. A.J.M. Spencer, A note on the decomposition of tensors into traceless symmetric tensors. Internat. J. Engrg. Sci. 8 (1970) 475–481.

    Google Scholar 

  45. E.S. Suhubi, Thermoelastic solids. In A. Cemal Eringen, editor, Continuum Mechanics of Songle-Substance Bodies volume II of Continuum Physics pages 173–275 Academic Press, New York (1975).

    Google Scholar 

  46. S. Sutcliffe, Spectral decomposition of the elasticity tensor. Trans. ASME J. Appl. Mech. 59 (1992) 762–773.

    Google Scholar 

  47. R.N. Thurston, Waves in solids. In C. Truesdell, editor, Mechanics of Solids IV volume VIa/4 of Handbüch der Physik pages 109–308. Springer, Berlin (1974).

    Google Scholar 

  48. L.J. Walpole, Fourth-rank tensors of the thirty-two crystal classes: Multiplication tables. Proc. R. Soc. Lond. A 391 (1984) 149–179.

    Google Scholar 

  49. H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton University Press, Princeton (1946).

    Google Scholar 

  50. Q.-S. Zheng, Theory of representations for tensor functions — a unified invariant approach to constitutive equations. AMR Applied Mechanics Reviews 47 (1994) 545–587.

    Google Scholar 

  51. Q.-S. Zheng and J.P. Boehler, The description, classification and reality of material and physical symmetries. Acta Mech. 102 (1994) 73–89.

    Google Scholar 

  52. Q.-S. Zheng and A.J.M. Spencer, On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems. Internat. J. Engrg. Sci. 31 (1993) 617–635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by GNFM of CNR (Italy)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forte, S., Vianello, M. Symmetry classes for elasticity tensors. J Elasticity 43, 81–108 (1996). https://doi.org/10.1007/BF00042505

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00042505

Key words

Mathematies Subject Classifications (1991)

Navigation