Skip to main content
Log in

Coexistence of plant species with similar niches

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

In the context of a simple mathematical model, we derive several mechanisms whereby plant species can coexist in a community without differing in their trophic niches (their relations with habitats, resources and exploiters). The model is based on the dynamics of species turnover in microsites, and incorporates localized competition, non-uniform seed dispersal and aspects of spatiotemporal environmental heterogeneity. These factors, which are not included in most standard competition models, allow stable coexistence of trophically equivalent species due to:

  1. (a)

    Differences in life-history ‘strategy’.

  2. (b)

    Input of seeds from neaby habitats (spatial Mass Effect).

  3. (c)

    Differences in demographic responses to environmental fluctuations (temporal Mass Effect).

  4. (d)

    Turnover in species composition between different habitat patches.

Quantitative descriptive studies are presented, demonstrating the occurrence of vegetation patterns predicted on the basis of the hypothesized mechanisms. We also review previously proposed mechanisms that would allow trophically equivalent species to coexist, and explore the theoretical and methodological implications of recognizing coexistence mechanisms independent of trophic niche differentiation. In particular, we propose that these mechanisms contribute to the dissimilarity of within-community replicate samples and the maintenance of many rare species in plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P., 1975. Limiting similarity and the form of the competition coefficient. Theor. Pop. Biol. 8: 356–375.

    Google Scholar 

  • Acevedo, L., M. F., 1981. On Horn's Markovian model of forest dynamics with particular reference to tropical forests. Theor. Pop. Biol. 19: 230–250.

    Google Scholar 

  • Anderson, P. K., 1970. Ecological structure and gene flow in small mammals. Symp. Zool. Soc. London 25: 299–325.

    Google Scholar 

  • Atkinson, W. P. & Shorrocks, B., 1981. Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol. 50: 461–471.

    Google Scholar 

  • Ayala, F., 1966. Reversal of dominance in competing species of Drosophila. Am. Nat. 100: 81–83.

    Google Scholar 

  • Barbour, M. H., Burk, J. H. & Pitts, W. D., 1980. Terrestrial Plant Ecology. Benjamin Cummings, Menlow Park, California, U.S.A.

    Google Scholar 

  • Barbour, M. G., Shmida, A. & Johnson, A, 1982. A comparison of coastal scrub vegetation in California and Israel: physiognomy, associations, and spatial diversity. Israel J. Bot. (in press).

  • Billings, D., 1952. The environmental complex in relation to plant growth and distribution. Rev. Biol. 27: 251–265.

    Google Scholar 

  • Braakhekke, W. G., 1980. On Coexistence: a causal approach to diversity and stability in grassland vegetation. Agr. Res. Rep. 902, Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Bratton, S. P., 1976. Resource division in an understory herb community: responses to temporal and microtopographic gradients. Am. Nat. 110: 679–693.

    Google Scholar 

  • Caswell, H., 1978. Predator mediated coexistence: a non-equilibrium model. Am. Nat. 112: 127–154.

    Google Scholar 

  • Chesson, P. L., 1978. Predator-prey theory and variability. Ann. Rev. Ecol. Syst. 9: 323–347.

    Google Scholar 

  • Chesson, P. L., 1981. Models for spatially distributed populations: the effect of within-patch variability. Theor. Pop. Biol. 19: 288–325.

    Google Scholar 

  • Chesson, P. L., 1982. The stabilizing effect of a random environment. J. Math. Biol. 15: 1–36.

    Google Scholar 

  • Chesson, P. L. & Warner, R. R., 1981. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117: 923–943.

    Google Scholar 

  • Cohen, J. E., 1970. A Markov contingency table model for replicated Lotka-Volterra systems near equilibrium. Am. Nat. 104: 547–559.

    Google Scholar 

  • Comins, H. M., 1982. Evolutionarily stable strategies for localized dispersal in two dimensions. J. Theor. Biol. 94: 579–606.

    Google Scholar 

  • Comins, H. N., Hamilton, W. D., May, R. M., 1980. Evolutionarily stable dispersal strategies. J. Theor. Biol. 32: 205–230.

    Google Scholar 

  • Connell, J. H., 1970. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In P. J.den, Boer & G. R., Gradwell (eds.), Dynamics of Populations. P. 298–312, Pudoc, Wageningen.

    Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Google Scholar 

  • Connell, J. H., 1979. Tropical rain forests and coral reefs as open non-equilibrium systems. In R. M., Anderson, Turner, B. D. & Taylor, L. R., (eds.), Population Dynamics, P. 141–163. Symp. Brit. Ecol. Soc. 20. Blackwell, Oxford-London-Edinburgh.

    Google Scholar 

  • Curtis, J. T., 1959. The Vegetation of Wisconsin. University of Wisconsin Press, Madison, Wisconsin.

    Google Scholar 

  • Dale, G., 1978. Money-in-the-bank; a model for coral reef fish coexistence. Env. Biol. Fish. 3: 103–108.

    Google Scholar 

  • Danin, A., Orshan, G. & Zohary, M., 1975. The vegetation of the northern Negev and the Judean desert of Israel. Israel J. Bot. 24: 118–172.

    Google Scholar 

  • Daubenmire, R. F., 1974. Plants and Environment. A textbook of plant autecology. John Wiley and Sons, New York, New York, U.S.A.

    Google Scholar 

  • DeAngelis, D. L., Travis, C. C. & Post, W. M., 1979. Persistence and stability of seed-dispersed species in a patchy environment. Theor. Pop. Biol. 16: 107–125.

    Google Scholar 

  • Diamond, J. M., 1975. Assembly of species communities. In M. L., Cody & Diamond, J. M., (eds.), Ecology and Evolution of Communities, P. 342–444. Belknap Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Elderkin, R. H., 1982. Seed dispersal in a patchy environment with global age dependence. J. Math. Biol. 13: 283–303.

    Google Scholar 

  • Ellner, S., 1984. Asymptotic behavior of some stochastic difference equation population models. J. Math. Biol. (in press).

  • Elton, C. S., 1927. Animal Ecology. Sidgwick and Jackson, London.

    Google Scholar 

  • Fagerström, T. & Ågren, G. I., 1979. Theory for coexistence of species differing in regeneration properties. Oikos 33: 1–10.

    Google Scholar 

  • Forcier, L. K., 1975. Reproductive strategies and co-occurrence of climax tree species. Science 189: 808–810.

    Google Scholar 

  • Fowler, N. L. & Antonovics, J., 1981. Small-scale variability in the demography of transplants of two herbaceous species. Ecology 62: 1450–1457.

    Google Scholar 

  • Fox, J. F., 1977. Alternation and coexistence of three species. Am. Nat. 111: 69–89.

    Google Scholar 

  • Grime, J. P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347.

    Google Scholar 

  • Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley and Sons, New York.

    Google Scholar 

  • Grubb, P. J., 1977. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.

    Google Scholar 

  • Gulmon, S. L., Rundel, P. W., Ehleringer, J. R. & Mooney, H. A., 1979. Spatial relationships and competition in a Chilean desert cactus. Oecologia 44: 40–43.

    Google Scholar 

  • Hamilton, W. D. & May, R. M., 1977. Dispersal in stable habitats. Nature 269: 578–581.

    Google Scholar 

  • Harper, J. L., 1969. The role of predation in vegetation diversity In G. M. Woodwell & Smith, H. (eds.), Diversity and Stability in Ecological Systems. P. 48–61. Brookhaven Symposia in Biology 22.

  • Harper, J. L., 1977. Population Biology of Plants. Academic Press, New York.

    Google Scholar 

  • Harper, J. L. & Sagar, G. R., 1953. Some aspects of the ecology of buttercups in permanent grassland. Proc. Br. Weed Control Conf. 1: 256–265.

    Google Scholar 

  • Harper, J. L., Clatworthy, H. N., McNaughton, S. & Sagar, G. R., 1961. The evolution and ecology of closely related species living in the same area. Evolution 15: 209–227.

    Google Scholar 

  • Harper, J. L., Williams, J. T. & Sagar, G. R., 1965. The behavior of seeds in soil I. The heterogeneity of soil surface and its role in determining the establishment of plants from seeds. J. Ecol. 53: 273–286.

    Google Scholar 

  • Hastings, A., 1980. Disturbance, coexistence, history, and competition for space. Theor. Pop. Biol. 18: 363–373.

    Google Scholar 

  • Holland, R. F. & Jain, S. K., 1981. Insular biogeography of vernal pools in the central valley of California. Am. Nat. 117: 24–37.

    Google Scholar 

  • Horn, H. S., 1975. Markovian properties of forest succession. In M., Cody & Diamond, J. (eds.), Ecology and Evolution of Communities. p. 196–211, Belknap Press, Cambridge, Mass.

    Google Scholar 

  • Horn, H. S., 1976. Succession. In R. M., May (ed.), Theoretical Ecology: Principles and Applications, p. 187–204. Saunders, Philadelphia.

    Google Scholar 

  • Hubbell, S. P., 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203: 1299–1309.

    Google Scholar 

  • Hubbell, S. P., 1980. Seed predation and the coexistence of tree species in tropical forests. Oikos 35: 214–229.

    Google Scholar 

  • Huston, M., 1979. A general hypothesis of species diversity. Am. Nat. 113: 81–101.

    Google Scholar 

  • Hutchinson, G. E., 1958. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? Am. Nat. 93: 145–159.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Google Scholar 

  • Itzkowitz, M., 1977. Spatial organization of the Jamaican damselfish community. J. Exp. Mar. Biol. Ecol. 28: 217–241.

    Google Scholar 

  • Jackson, J. B. C. & Buss, L., 1975. Allelopathy and spatial competition among coral reef invertebrates. Proc. Natl. Acad. Sci. U.S.A. 72: 5160–5163.

    Google Scholar 

  • Janzen, D. H., 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104: 401–428.

    Google Scholar 

  • Karlin, S. & McGregor, J., 1972a. Polymorphisms for genetic and ecological systems with weak coupling. Theor. Pop. Biol. 3: 210–238.

    Google Scholar 

  • Karlin, S. & McGregor, J., 1972b. Application of method of small parameters to multi-niche population genetic models. Theor. Pop. Biol. 3: 186–209.

    Google Scholar 

  • Keiding, N., 1975. Extinction and exponential growth in random environments. Theor. Pop. Biol. 8: 49–63.

    Google Scholar 

  • Kilburn, P. D., 1966. Analysis of the species area relation. Ecology 47: 831–843.

    Google Scholar 

  • Lawton, J. H. & Strong, D. R.Jr., 1981. Community patterns and competition in folivorous insects. Am. Nat. 118: 317–338.

    Google Scholar 

  • Levin, S. A., 1974. Dispersion and population interactions. Am. Nat. 114: 103–114.

    Google Scholar 

  • Levin, S. A., 1976. Population models and community structure in heterogeneous environments. In S. A. Levin (ed.), Mathematical Association of America. Studies in the Mathematical Biology, II: Populations and communities. P. 439–476.

  • Levin, S. A., 1979. Non-uniform stable solutions to reaction-diffusion equations: applications to ecological pattern formulation. In H., Haken (ed.), Pattern Formation by Dynamic Systems and Pattern Recognition. p. 210–222. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Levin, S. A., 1981. Mechanisms for the generation and maintenance of diversity in ecological communities. In M. S., Bartlett & Hiorns, R. W. (eds.), The Mathematical Theory of the Dynamics of Biological Populations, 2. P. 173–194. Academic Press, New York.

    Google Scholar 

  • Levin, S. A. & Paine, R. T., 1974. Disturbance, patch formation and community structure. Proc. Natl. Acad. Sci. U.S.A. 71: 2744–2747.

    Google Scholar 

  • Levins, R. & Culver, D., 1971. Regional coexistence of species and competition between rare species. Proc. Natl. Acad. Sci. U.S.A. 68: 1246–1248.

    Google Scholar 

  • Leith, H., 1960. Patterns of change within grassland communities. In J. L., Harper (ed.), The Biology of Weeds, P. 27–39. Blackwell, Oxford.

    Google Scholar 

  • Linhart, Y., 1980. Local biogeography of plants on a Caribbean atoll. J. Biogeogr. 7: 159–171.

    Google Scholar 

  • Loria, M. & Noy-Meir, I., 1979/80. Dynamics of some annual species in a desert loess plain. Israel J. Botany 28: 211–225.

    Google Scholar 

  • MacArthur, R. H., 1968. The theory of the niche. In R. C., Lewontin (ed.), Population Biology and Evolution. P. 159–186. Syracuse University Press, Syracuse, New York, U.S.A.

    Google Scholar 

  • MacArthur, R. H., 1972. Geographical Ecology. Harper and Row, New York.

    Google Scholar 

  • MacArthur, R. H. & Levins, R., 1967. The limiting similarity, convergence and divergence of coexisting species. Am. Nat. 101: 377–385.

    Google Scholar 

  • MacDonald, N. & Watkinson, A. R., 1981. Models of an annual plant population with a seedbank. J. Theor. Biol. 93: 643–653.

    Google Scholar 

  • Major, J., 1951. A functional, factorial approach to plant ecology. Ecology 39: 392–412.

    Google Scholar 

  • Marshall, D. R. & Jain, S. K., 1967. Cohabitation and relative abundance of two species of wild oats. Ecology 48: 656–659.

    Google Scholar 

  • Matano, H., 1979. Asymptotic behavior and stability of solutions of semilinear diffusion equations. RIMS Kyoto Univ. 15: 401–451.

    Google Scholar 

  • May, R. M., 1975. Patterns of species abundance and diversity. In M. L., Cody & Diamond, J. M. (eds.), Ecology and Evolution of Communities. P. 81–120. Belknap Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • May, R. M. & MacArthur, R. H., 1972. Niche overlap as a function of environmental variability. Proc. Natl. Acad. Sci. U.S.A. 69: 1109–1113.

    Google Scholar 

  • Menge, B. A., 1979. Coexistence between the seastars Asterias vulgaris and A. forbesi in a heterogeneous environment: a non-equilibrium explanation. Oecologia 41: 245–272.

    Google Scholar 

  • Motro, U., 1982. Optimal rates of dispersal. I. Haploid populations. II. Diploid populations. Theor. Pop. Biol. 21: 394–411, 412–429.

    Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H., 1974. Aims and Methods of Vegetation Science. John Wiley and Sons, New York, New York, U.S.A.

    Google Scholar 

  • Murdoch, W. W., 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39: 335–354.

    Google Scholar 

  • Murdoch, W. W. & Oaten, A., 1975. Predation and population stability. Adv. Ecol. Res. 9: 1–131.

    Google Scholar 

  • Naveh, Z. & Whittaker, R. H., 1979. Structural and floristic diversity of shrublands and woodlands in Northern Israel and other mediterranean areas. Vegetatio 41: 171–190.

    Google Scholar 

  • Noy-Meir, I., 1972. Multivariate analysis of the semi-arid vegetation in southeastern Australia. I. Nodal ordination by component analysis. Proc. Ecol. Soc. Australia 6: 159–193.

    Google Scholar 

  • Paine, R. T., 1966. Food web complexity and species diversity. Am. Nat. 100: 65–75.

    Google Scholar 

  • Paine, R. T. & Levin, S. A., 1981. Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51: 145–178.

    Google Scholar 

  • Park, T. & Lloyd, M., 1955. Natural selection and the outcome of competition. Am. Nat. 96: 235–240.

    Google Scholar 

  • Parrish, J. A. D. & Bazzaz, F. A., 1976. Underground niche separation in successional plants. Ecology 57: 1281–1288.

    Google Scholar 

  • Peet, R. K., Glenn-Lewin, D. C. & Wolf, J. W., 1983. Prediction of man's impact on plant species diversity: a challenge for vegetation science. In: W., Holzner, Werger, M. J. A. & Ikusima, I. (eds.), Man's Impact on Vegetation, Junk, The Hague.

    Google Scholar 

  • Pickett, S. T. A., 1980. Non-equilibrium coexistence of plants. Bull. Torrey Bot. Club 107: 238–248.

    Google Scholar 

  • Pickett, S. T. A.& Bazzaz, F. A., 1976. Divergence of two co-occurring successional annuals on a soil moisture gradient. Ecology 57: 169–176.

    Google Scholar 

  • Pielou, E. C., 1975. Ecological Diversity. Wiley-Interscience, N.Y.

    Google Scholar 

  • Pimentel, D., 1968. Population regulation and genetic feedback. Science 159: 1432–1437.

    Google Scholar 

  • Pimentel, D., Feinberg, E. H., Wood, P. W. & Hayes, J. T., 1965. Selection, spatial distribution, and the coexistence of competing fly species. Am. Nat. 99: 97–109.

    Google Scholar 

  • Platt, W. J., 1975. The colonization and formation of equilibrium plant species associations on badger disturbances in a tall-grass prairie. Ecol. Monogr. 45: 285–305.

    Google Scholar 

  • Platt, W. J. & Weis, I. M., 1977. Resource partitioning and competition within a guild of fugitive prairie plants. Am. Nat. 111: 479–513.

    Google Scholar 

  • Preston, F. W., 1948. The commonness and rarity of species. Ecology 41: 479–513.

    Google Scholar 

  • Preston, F. W., 1948. The commonness and rarity of species. Ecology 41: 611–627.

    Google Scholar 

  • Preston, F. W., 1962. The canonical distribution of commonness and rarity. Ecology 43: 185–215, 410–432.

    Google Scholar 

  • Rappoldt, C. & Hogeweg, P., 1980. Niche packing and number of species. Am. Nat. 116: 480–492.

    Google Scholar 

  • Roughgarden, J. & Feldman, M., 1975. Species packing and predation pressure. Ecology 56: 489–492.

    Google Scholar 

  • Runemark, H., 1969. Reproductive drift, a neglected principle in reproductive biology. Botaniska Notiser 122: 90–129.

    Google Scholar 

  • Runemark, H., 1971. Distribution patterns in the Aegean. In P. H., Davis, Harper, P. C. & Hedge, I. C. (eds.), Plant Life of Southwest Asia. P. 3–14. Botanical Society of Edinburgh, Edinburgh.

    Google Scholar 

  • Sale, P. F., 1974. Mechanisms of coexistence in a guild of territorial fishes at Heron Island. In Proc. Second. Intern. Symp. Coral Reefs 1. P. 193–206.

  • Sale, P. F., 1977. Maintenance of high diversity of coral reef fish communities. Am. Nat. 111: 337–359.

    Google Scholar 

  • Sale, P. F., 1978. Coexistence of coral reef fishes — a lottery for living space. Env. Biol. Fish 3: 85–102.

    Google Scholar 

  • Sale, P. F., 1979. Recruitment, loss and coexistence in the guild of territorial coral reef fishes. Oecologia 42: 159–177.

    Google Scholar 

  • Sarukhan, J., 1974. Studies on plant demography: Ranunculus repens L., R. bulbosus L. and R. acris. II. Reproductive strategies and seed population dynamics. J. Ecol. 62: 151–177.

    Google Scholar 

  • Sarukhan, J. & Harper, J. L., 1973. Studies on plant demography: Ranunculus repens L., R. bulbosus L. and R. acris. I. Population flux and survivorship. J. Ecol. 61: 675–716.

    Google Scholar 

  • Schaffer, W. M. & Leigh, E. G., 1976. The prospective role of mathematical theory in plant ecology. Systematic Botany 1: 209–232.

    Google Scholar 

  • Shmida, A., 1972. The vegetation of Gebel-Maghara, North Sinai. M. Sc. Thesis, Hebrew University, Jerusalem, Israel. English summary.

    Google Scholar 

  • Shmida, A., 1977. A quantitative analysis of the tragacanthic vegetation of Mt. Hermon and its relation to environmental factors. Dissertation, Hebrew University, Jerusalem, Israel. English summary.

    Google Scholar 

  • Shmida, A. & Whittaker, R. H., 1981. Pattern and biological microsite effects in two shrub communities, Southern California. Ecology 62: 234–251.

    Google Scholar 

  • Skellam, J. G., 1951. Random dispersal in theoretical populations. Biometrika 38: 196–218.

    Google Scholar 

  • Slatkin, M., 1974. Competition and regional coexistence. Ecology 55: 128–134.

    Google Scholar 

  • Smith, F. E., 1972. Spatial heterogeneity, stability, and diversity in ecosystems. In E. S. Deevey (ed.), Growth by Intussesception. Ecological Essays in Honor of Evelyn Hutchinson. Trans. Conn. Arts. Sci. 44.

  • Snogerup, S., 1971. Evolution and plant geography of chasmophytic communities. In P. H., Davis, Harper, P. C. & Hedge, L. C., Plant Life of South-west Asia. P. 157–170. Botanical Society of Edinburgh, Edinburgh.

    Google Scholar 

  • Sousa, W. P., 1979. Disturbances in marine intertidal boulder fields: the non-equilibrium maintenance of species diversity. Ecology 60: 1225–1239.

    Google Scholar 

  • Sutherland, J. P., 1974. Multiple stable points in natural communities. Am. Nat. 108: 859–873.

    Google Scholar 

  • Talbot, F. H., Russell, B. C. & Armstrong, G. R. V., 1978. Coral-reef fish communities: unstable high-diversity systems? Ecol. Monogr. 48: 425–440.

    Google Scholar 

  • Tilman, D., 1982. Resource Competition and Community Structure. Monographys in Population Biology 17. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Turelli, M., 1981. Niche overlap and invasion of competitors in random environments. I. Models without demographic stochasticity. Theor. Pop. Biol. 20: 1–56.

    Google Scholar 

  • Turkington, R. & Harper, J. L., 1979. The growth, distribution, and neighbour relationships of Trifolium repens in a permanent pasture. I. Ordination, pattern, and contact. IV. Fine-scale biotic differentiation. J. Ecol. 67: 201–218, 245–254.

    Google Scholar 

  • Watson, M. A., 1981. Patterns of microhabitat occupation of six closely related species of mosses along a complex altitudinal gradient. Ecology 62: 1067–1078.

    Google Scholar 

  • Watt, A. S., 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Google Scholar 

  • Watt, A. S., 1964. The community and the individual. J. Ecol. 52: 203–211.

    Google Scholar 

  • Werner, P. A., 1979. Competition and coexistence of similar species. In O. T., Solbrig, Jain, S., Johnson, G. B. & Raven, P. H. (eds.), Topics in Plant Population Biology. P. 287–310. Columbia University Press, New York.

    Google Scholar 

  • Werner, P. A. & Platt, W. J., 1976. Ecological relationships of co-occurring goldenrods. Am. Nat. 111: 959–971.

    Google Scholar 

  • Whittaker, R. H., 1965. Dominance and diversity in land plant communities. Science 147: 250–260.

    Google Scholar 

  • Whittaker, R. H., 1969. Evolution of diversity in plant communities. In G. M. Woodwell & Smith, H. (eds.), Diversity and stability in ecological systems. P. 178–195. Brookhaven Symposia in Biology 22.

  • Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21 (2–3): 213–251.

    Google Scholar 

  • Whittaker, R. H., 1975. Communities and Ecosystems. MacMillan, New York.

    Google Scholar 

  • Whittaker, R. H., 1977. Evolution of species diversity in land communities. Evolutionary Biology 10: 1–67.

    Google Scholar 

  • Whittaker, R. H. & Levin, S. A., 1977. The role of mosaic phenomena in natural communities. Theor. Pop. Biol. 12: 117–139.

    Google Scholar 

  • Williams, C. B., 1964. Patterns in the Balance of Nature. Academic Press, New York.

    Google Scholar 

  • Woods, K. D., 1979. Reciprocal replacement and the maintenance of codominance in a beech-maple forest. Oikos 33: 31–39.

    Google Scholar 

  • Yodzis, P., 1978. Competition for Space and the Structure of Ecological Communities. Lecture Notes in Biomathematics 25. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Yoshiyama, R. M. & Roughgarden, J., 1977. Species packing in two dimensions. Am. Nat. 111: 107–121.

    Google Scholar 

  • Zohary, M., 1973. Geobotanical Foundations of the Middle East. Gustav-Fischer Verlag, Stuttgart.

    Google Scholar 

  • Zohary, M. & Feinbrun-Dothan, N., 1966→ Flora Palaestina. Israel Academy of Sciences and Humanities, Jerusalem.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature follows Zohary & Feinbrun-Dothan(1966→).

Acknowledgements. We are grateful to D. Cohen, R. H. Whittaker, and S. A. Levin for establishing the Cornell/Hebrew University association that enabled us to work together, and for discussions of the ideas presented here. Innumerable staff from the field schools of the Society for the Protection of Nature in Israel assisted with the field work. We have freely incorporated ideas and improvements suggested by volunteer reviewers, including I. Noy-Meir, S. Levin, M. Rosenzweig, P. Chesson, R. K. Peet, and especially P. J. Grubb. Support came in part from NSF Grant DEB 78-09340 to R. H. Whittaker (AS), NSF Grants MCS 77-01076 and MCS 80-01618 to S. a. Levin (SPF) and NSF and Lady Davis Trust (Jerusalem) Graduate Fellowships to SPE. Typing was done graciously under pressure by B. Marks and C. Blair; the figures are by M. Shmida and W. Brown. This paper is dedicated to the memory of R. H. Whittaker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shmida, A., Ellner, S. Coexistence of plant species with similar niches. Vegetatio 58, 29–55 (1984). https://doi.org/10.1007/BF00044894

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00044894

Keywords

Navigation