Skip to main content
Log in

Energy flux into the tip of an extending crack in an elastic solid

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Summary

An expression for the energy flux into the tip of an extending crack in terms of the dynamic elastic field of the crack is derived on the basis of an overall energy rate balance. It is shown that the energy flux depends only on the near-tip elastic field. The expression is compared to other expressions for this dependence which have been proposed by Atkinson and Eshelby, by Achenbach and by Erdogan. The energy flux is calculated in terms of the stress intensity factor for a particular plane strain problem and an antiplane strain problem.

Résumé

Sur la base d'un équilibre énergétique dynamique global, le flux d'énergie convergeant vers l'extrémité d'une tissure en propagation est exprimé en fonction du champ élastique dynamique de la fissure. II est démontré que ce flux d'énergie ne dépend que du champ élastique au voisinage immédiat de l'extremité de la fissure, L'expression obtenue est comparée aux expressions précédemment proposées par MM. Atkinson et Eshelby, Mr. Achenbach, et Mr. Erdogan. Le flux d'énergie est évalué en fonction du facteur d'intensité des contraintes dans les cas particuliers d'un problème de déformation plane et d'un problème dans lequel la direction du cisaillement est horizontale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshelby, J. D., The Continuum Theory of Lattice Defects. Solid State Physics 3, Academic Press (1956)

  2. Rice, J. R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 35, (1968) 379

    Google Scholar 

  3. Atkinson, C. and Eshelby, J. D., The Flow of Energy into the Tip of a Moving Crack. J. Fracture Mech. 4, (1968) 3

    Google Scholar 

  4. Achenbach, J. D., Extension of a Crack by a Shear Wave. ZAMP 21, (1970) 887

    Google Scholar 

  5. Sokolnikoff, I. S., Mathematical Theory of Elasticity. McGraw-Hill, (1956) 83

  6. deHoop, A. T., Sc.D. Thesis, Technische Hogeschool, Delft (1958)

  7. Erdogan, F., Crack Propagation Theories: in Fracture, edited by H. Liebowitz, Academic Press, Vol. II (1968)

  8. Eshelby, J. D., The Elastic Field of a Crack Extending Non-Uniformly under General Anti-plane Loading. J. Mech. Phys. Solids 17, (1969) 177

    Google Scholar 

  9. Freund, L. B., Crack Propagation in an Elastic Solid Subjected to General Loading. II. Non-uniform Rate of Extension. J. Mech. Phys. Solids 20, (1972) 141

    Google Scholar 

  10. Titchmarsh, E. C., Fourier Integrals, Oxford Univ. Press (1948)

  11. Rice, J. R., An Examination of the Fracture Mechanics Energy Balance From the Point of View of Continuum Mechanics. Proc. of the First International Conference on Fracture, Sendai, (1965) 283

  12. Freund, L. B., Crack Propagation in an Elastic Solid Subjected to General Loading. I. Constant Rate of Extension. J. Mech. Phys. Solids 20, (1972) 129

    Google Scholar 

  13. Achenbach, J. D., Brittle Fracture under Dynamic Loading Conditions: in Contributions to the Theory of Aircraft Structures (van der Neut Anniversary Volume), Delft University Press (1972)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the United States Atomic Energy Commission through Contract AT (11-1)-3084 with Brown University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, L.B. Energy flux into the tip of an extending crack in an elastic solid. J Elasticity 2, 341–349 (1972). https://doi.org/10.1007/BF00045718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045718

Keywords

Navigation