Skip to main content
Log in

On the mechanics of crack closing and bonding in linear viscoelastic media

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The mechanics of quasi-static crack closing and bonding of surfaces of the same or different linear viscoelastic materials is described. Included is a study of time-dependent joining of initially curved surfaces under the action of surface forces of attraction and external loading. Emphasis is on the use of continuum mechanics to develop equations for predicting crack length or contact size as a function of time for relatively general geometries; atomic and molecular processes associated with the healing or bonding process are taken into account using a crack tip idealization which is similar to that used in the Barenblatt method for fracture. Starting with a previously develiped correspondence principle, an expression is derived for the rate of movement of the edge of the bonded area. The effects of material time-dependence and the stress intensity factor are quite different from those for crack growth. A comparison of intrinsic and apparent energies of fracture and bonding is made, and criteria are given for determining whether or not bonding can occur. Examples are given to illustrate use of the basic theory for predicting healing of cracks and growth of contact area of initially curved surfaces. Finally, the effect of bonding time on joint strength is estimated from the examples on contact area growth.

Résumé

On décrit le mécanisme de fermeture d'une fissure quasi-statique et de collage des surfaces de matériaux visco-élastiques linéaires indentiques ou différents. On couvre également l'étude de la liaison dans le temps de surfaces à courbure initiale sous l'effet des forces de surface résultant de l'attraction et de charges extérieures. L'accent est placé sur l'utilisation de la mécanique des milieux continus pour l'établissement d'équations permettant de prédire la longueur de fissuration et la dimension des zones et contact en fonction du temps, dans le cas de géométries relativement générales. On prend en compte les processus atmostiques et moléculaires associés aux phénomènes de cicatrisation ou de collage en recourant à une idéalisation de l'extrémité de la fissure comparable à celle utilisée dans la méthode d'analyse des ruptures due à Barenblatt. En partant d'un principe de correspondances établi précédemment, on déduit une expansion décrivant la vitesse de déplacement du bord de la zone collée. On constate que les effets de la dépendance des propriétés du matériau en fonction du temps et du facteur d'intensité de contraintes sont différents de ceux exercés sur la croissance d'une fissure. On procède à une comparaison des énergies intrinsèques et apparentes de rupture et de collage, et on donne des critères pour déterminer si un collage peut ou non avoir lieu. Des exemples illustrent l'emploi de la théorie de base pour décrire la cicatrisation des fissures et la croissance de la surface de contact de surfaces initialement courbes. Enfin, on estime l'effet du temps de collage sur la résistance du joint, à partir des exemples de croissance de la surface de contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Williams, in Proceedings 5th U.S. National Congress of Applied Mechanies, American Society of Mechanical Engineers (1966) 451–464.

  2. M.L. Williams, International Journal of Fracture Mechanics 1 (1965) 292–310.

    Google Scholar 

  3. W.G. Knauss, in Deformation and Fracture of High Polymers, H. Henning Kausch, John A. Hassell and Robert I. Jaffee (eds.) Plenum Press (1974) 501–541.

  4. R.A. Schapery, International Journal of Fracture 11 (1975): Part I, 141–159; Part II, 369–388; Part III, 549–562.

    Google Scholar 

  5. G.S. Brockway and R.A. Schapery, Engineering Fracture Mechanics 10 (1978) 453–468.

    Google Scholar 

  6. R.M. Christensen, Theory of Viscoelasticity, An Introduction, 2nd edn., Academic Press (1982).

  7. J.G. Williams, Fracture Mechanics of Polymers, Halstead Press, John Wiley & Sons (1984).

  8. R.A. Schapery, International Journal of Fracture 14 (1978) 293–309.

    Google Scholar 

  9. J.R. Walton, Journal of Applied Mechanics 54 (1987) 635–641.

    Google Scholar 

  10. K.L. Johnson, K. Kendall and A.D. Roberts, Proceedings of the Royal Society (London) A 234 (1971) 301–313.

    Google Scholar 

  11. A.D. Roberts and A.G. Thomas, Wear 33 (1975) 45–64.

    Google Scholar 

  12. J.A. Greenwood and K.L. Johnson, Philosephical Magazine A 43 (1981) 697–711.

    Google Scholar 

  13. J.N. Anand and H.J. Karam, Journal of Adhesion 1 (1969) 16–23.

    Google Scholar 

  14. J.N. Anand and R.Z. Balwinski, Journal of Adhesion 1 (1969) 24–30.

    Google Scholar 

  15. J.N. Anand, Journal of Adhesion 1 (1969) 31–37.

    Google Scholar 

  16. J.N. Anand and L. Dipzinski, Journal of Adhesion 2 (1970) 16–22.

    Google Scholar 

  17. J.N. Anand, Journal of Adhesion 2 (1970) 23–28.

    Google Scholar 

  18. J.N. Anand, Journal of Adhesion 5 (1973) 265–267.

    Google Scholar 

  19. H.H. Kausch, D. Petrovska, R.F. Landel and L. Monnerie, Polymer Engineering and Science 27 (1987) 149–154.

    Google Scholar 

  20. K. Jud, H.H. Kausch and J.G. Williams, Journal of Materials Science 16 (1981) 204–210.

    Google Scholar 

  21. R.G. Stacer and H.L. Schreuder-Stacer, International Journal of Fracture 39 (1989) 201–216.

    Google Scholar 

  22. J.W. Button, D.N. Little, Y. Kim and J. Ahmed, Proceedings Association of Asphalt Paving Technologists 5b (1987) 62–90.

    Google Scholar 

  23. A.H. Lepie, Proceedings JANNAF Struetures and Mechanical Behavior Working Group CPIA Publication No. 351 (1981) 233–240.

  24. R.A. Schapery, Tire Science & Technology 6 (1978) 3–47.

    Google Scholar 

  25. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd edn. McGraw-Hill (1970).

  26. R.A. Schapery, International Journal of Fracture 25 (1984) 195–223.

    Google Scholar 

  27. M.A. Biot, Quarterly Applied Mathematics XXX (1972) 379–406.

    Google Scholar 

  28. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. Wiley (1980).

  29. D. Broek, Elementary Engineering Fracture Mechanics, 4th edn. Martinus Nijhoff (1986).

  30. T.C.T. Ting, Journal of Applied Mechanics 33 (1966) 845–854.

    Google Scholar 

  31. G.A.C. Graham, International Journal of Engineering Science 14 (1976) 1135–1142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schapery, R.A. On the mechanics of crack closing and bonding in linear viscoelastic media. Int J Fract 39, 163–189 (1989). https://doi.org/10.1007/BF00047448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047448

Keywords

Navigation