Skip to main content
Log in

Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The Normalized Difference Vegetation Index (NDVI) or ‘greenness index’, based on the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA-7 satellite, has been widely interpreted as a measure of regional to global vegetation patterns. This study provides the first rigorous, quantitative evaluation of global relationships between the NDVI and geographically representative vegetation data-bases, including field metabolic measurements and carbon-balance results from global simulation models. Geographic reliability of the NDVI is judged by comparing NDVI values for different surface types with a general global trend and by statistical analysis of relationships to biomass amounts, net and gross primary productivity, and actual evapotranspiration. NDVI data appear to be relatively reliable predictors of primary productivity except in areas of complex terrain, for seasonal values at high latitudes, and in extreme deserts. The strength of the NDVI-productivity relationship seems comparable to that of earlier climate-based productivity models. Little consistent relationship was found, across different vegetation types, between NDVI and biomass amounts or net biospheric CO2 flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AET=:

Actual Evapotranspiration

AVHRR=:

Advanced Very High Resolution Radiometer

GPP=:

Gross Primary Production

GVI=:

Global Vegetation Index

NDVI=:

Normalized Difference Vegetation Index

NPP=:

Net Primary Production

References

  • AIBS 1986. Special issue on remote sensing of the biosphere. Bio-Science 36: 429–483.

    Google Scholar 

  • Beard, J. S. 1980. Vegetation survey of Western Australia. 7 vols + maps (7 sheets). Univ. Western Australia Press, Nedlands.

    Google Scholar 

  • Botkin, D. B., Estes, J. E., MacDonald, R. M. & Wilson, M. V. 1984. Studying the earth's vegetation from space. BioScience 34: 508–514.

    Google Scholar 

  • Box, E. O. 1978. Geographic dimensions of terrestrial net and gross primary productivity. Radiat. Env. Biophys. 15: 305–322.

    Google Scholar 

  • Box, E. O. 1979. World map of difference between Thornthwaite and Holdridge PET estimates. In: Harvard Library of Computer Mapping, 5: 11–27 (map 7). Harvard University, Cambridge (Massachusetts).

    Google Scholar 

  • Box, E. O. 1981. Macroclimate and plant forms: An introduction to predictive modeling in phytogeography. Tasks for Vegetation Science, 1. Junk, The Hague.

    Google Scholar 

  • Box, E. O. 1982. SOLWAT: A minimal-input soil water simulation system applicable to a full range of natural situations. Univ. of Georgia, Geography Dept., Athens.

    Google Scholar 

  • Box, E. O. 1986. Some climatic relations of the vegetation of Argentina, in global perspective. In: Eskuche, U. & Landolt, E. (eds), Contributions to Knowledge of the Flora and Vegetation of Northern Argentina, Veröff. Geobotan. Inst. Rübel 18: 181–216.

  • Box, E. O. 1988. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere. J. Appl. Meteorol. 27: 1109–1124.

    Google Scholar 

  • Box, E. O. 1988. Effects of seasonal vegetation structure on carbon dynamics of terrestrial biosphere models. In: Verhoeven, J., et al. (eds), Effect of vegetation structure and composition on carbon and nutrient economy. SPB Academic Publ., The Hague.

    Google Scholar 

  • Brook, G. A., Folkoff, M. E. & Box, E O., 1983. A world model of soil carbon dioxide. Earth Surface Proc. Landforms 8: 79–88.

    Google Scholar 

  • Cannell, M. G. R. 1982. World forest biomass and primary production data. Academic Press, London.

    Google Scholar 

  • Carter, D. B. & Mather, J. R. 1966, Climate classification for environmental biology. Publ. in Climatology, 19(4), Univ. of Delaware.

  • DeAngelis, D. L., Gardner, R. H. & Shugart, H. H. 1981. Productivity of forest ecosystems studied during the IBP: the woodlands data-set. In: Reichle, D. E. (ed.), Dynamic properties of forest ecosystems, pp. 567–672. Cambridge University Press.

  • Dwivedi, R. 1971. Suitability of measuring carbon assimilation rates for evaluation of solar energy conservation and drymatter production in plants. Trop. Ecol. 12: 123–132.

    Google Scholar 

  • Esser, G., Aselmann, I. & Lieth, H. 1982. Modelling the carbon reservoir in the system compartment “Litter”. SCOPE/UNEP special vol. 52, Mitteil. Geol.-Paläont. Inst. Univ. of Hamburg, pp. 39–58.

  • Eyre, S. R. 1968. Vegetation and soils, 2nd ed. Aldine, Chicago.

    Google Scholar 

  • Fung, I. Y., Tucker, C. J. & Prentice, K. 1987. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res. 92(D3): 2999–3015.

    Google Scholar 

  • Gillette, D. A. & Box, E. O. 1986. Modeling seasonal changes of atmospheric carbon dioxide and stable carbon isotopes. J. Geophys. Res. 91(D4): 5287–5304.

    Google Scholar 

  • Goward, S. N., Tucker, C. J. & Dye, D. G. 1985. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64: 3–14.

    Google Scholar 

  • Holben, B. N. 1986. Characteristics of maximum-value composite images of temporal AVHRR data. Int. J. Remote Sens. 7: 1417–1434.

    Google Scholar 

  • Horvát, I., Glavač, V. & Ellenberg, H. 1974. Vegetation Südosteuropas. Gustav-Fischer-Verlag, Stuttgart.

    Google Scholar 

  • Hou, Xue-yu et al. 1980. (Vegetation regions of the People's Republic of China). Academia Sinica, Beijing (in Chinese).

    Google Scholar 

  • Houghton, R. A. 1987a. Biotic changes consistent with the increased seasonal amplitude of atmospheric CO2 concentrations. J. Geophys. Res. 92(D4): 4223–4230.

    Google Scholar 

  • Houghton, R. A. 1987b. Terrestrial metabolism and atmospheric CO2 concentrations. BioScience 37: 672–678.

    Google Scholar 

  • Hozumi, K., Yoda, K. & Kira, T. 1969. Production ecology of tropical rainforests in southwestern Cambodia. II. Photosynthetic production in an evergreen seasonal forest. Nature and Life in Southeast Asia, 6: 57–81.

    Google Scholar 

  • Hueck, K. & Seibert, P. 1972. Vegetationskarte von Südamerika. Vegetationsmonographien der einzelnen Großräume, vol IIa. Gustav-Fischer-Verlag, Stuttgart.

    Google Scholar 

  • Johannsen, Ch. J. & Sanders, J. L. 1982. Remote sensing for resource management. Soil Conservation Soc. America, Ankeny (Iowa).

    Google Scholar 

  • Jordan, C. 1971. A world pattern in plant energetics. Amer. Sci. 59: 426–433.

    Google Scholar 

  • Justice, Ch. O. (ed.) 1986. Monitoring the grasslands of semi-arid Africa using NOAA-AVHRR data. Special number. Int. J. Remote Sensing 7: 1383–1622.

  • Justice, Ch. O., Townshend, J. R. G., Holben, B. N. & Tucker, C. J. 1985. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sensing 6: 1271–1318.

    Google Scholar 

  • Kira, T. 1975. Primary production of forests. In: Cooper, J. P. (ed.), Photosynthesis and productivity in different environments. Cambridge Univ. Press.

  • Küchler, A. W. 1964. The potential natural vegetation of the conterminous United States. Amer. Geogr. Soc., New York.

    Google Scholar 

  • Kumar, M. & Monteith, J. L., 1981. Remote sensing of crop growth. In: Smith, H. (ed.), Plants and the daylight spectrum. Academic Press, New York.

    Google Scholar 

  • Lieth, H. 1975a. Primary production of the major vegetation units of the world. In: Lieth, H. & Whittaker, R. H. (eds), Primary productivity of the biosphere, pp. 203–215. Springer-Verlag, New York.

    Google Scholar 

  • Lieth, H. 1975b. Modeling the primary production of the world. In: Lieth, H. & Whittaker, R. H. (eds), Primary production of the biosphere, pp. 237–263. Springer-Verlag, New York.

    Google Scholar 

  • Lieth, H. & Box, E. O. 1972. Evapotranspiration and primary productivity: C. W. Thornthwaite Memorial Model. Publ. Climatol. 25: 37–46, University of Delaware.

    Google Scholar 

  • Lieth, H. & Box, E. O. 1977. The gross primary productivity pattern of the land vegetation: A first attempt. Trop. Ecol. 18: 109–115.

    Google Scholar 

  • Major, J. 1963. A climatic index to vascular plant activity. Ecology 44: 485–498.

    Google Scholar 

  • Mather, J. R. 1974. Climatology: fundamentals and applications. McGraw-Hill, New York.

    Google Scholar 

  • Mather, J. R. & Yoshioka, G. 1966. The role of climate in the distribution of vegetation. Publ. Climatol. 19: 372–384, University of Delaware.

    Google Scholar 

  • Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465–472.

    Google Scholar 

  • Meentemeyer, V. 1985. Climatic control of litter dynamics in tropical forest. In: Misra, K. C. (ed.), Ecology and resource management in tropics, pp. 302–310, Bhargava, Varanasi (India).

    Google Scholar 

  • Meentemeyer, V., Box, E. O. & Thompson, R. 1982. World patterns and amounts of terrestrial plant litter production. BioScience 32: 125–128.

    Google Scholar 

  • Moeller, C. M. 1945. Untersuchungen über Laubmenge, Stoffverlust, und Stoffproduktion des Waldes. Forstl. Forsoegsv. Danmark 17: 1–287.

    Google Scholar 

  • Moeller, C. M., Mueller, D. & Nielsen, J. 1954. The dry-matter production of the European beech. Forstl. Forsoegsv. Danmark 21: 253–335.

    Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. Wiley, New York.

    Google Scholar 

  • Odum, E. P. 1971. Fundamentals of ecology, 3rd ed. W. B. Saunders Co., Philadelphia.

    Google Scholar 

  • Olson, J. 1963. Energy storage and the balance of producers and decomposers in ecological systems., Ecology 44: 322–331.

    Google Scholar 

  • O'Neill, R. V. & DeAngelis, D. L. 1981. Comparative productivity and biomass relations of forest ecosystems. In: Reichle, D. E. (ed.), Dynamic properties of forest ecosystems, pp. 411–449. IBP Series, Vol. 23. Cambridge University Press.

  • Rosenzweig, M. L. 1968. Net primary productivity of terrestrial communities: prediction from climatological data. Amer. Nat. 102: 67–74.

    Google Scholar 

  • Rowe, J. S. 1972. Forest regions of Canada, revised ed. Dept. of Natural Resources, Ottawa.

    Google Scholar 

  • Salisbury, F. B. & Ross, C. W. 1978. Plant physiology. 2nd ed. Wadsworth Publ., Belmont (Calif.).

    Google Scholar 

  • SAS 1986. Statistical Analysis System, version 5.16, SAS Institute, Cary (North Carolina).

    Google Scholar 

  • Schmithüsen, J. 1976. Atlas zur Biogeographie. Bibliographisches Institut, Mannheim.

    Google Scholar 

  • Sharp, D. D., Wyatt, R. E. & Lieth, H. 1974. Length of the growing period, in months (world map) In: Lieth, H. (ed.), Phenology and seasonality modeling. Springer-Verlag, New York.

    Google Scholar 

  • Sharp, D. D., Lieth, H., Noggle, G. R. & Gross, H. D. 1976. Agricultural and forest primary productivity in North Carolina 1972–1973. N. Carolina Agric. Expt. Station. Techn. Bull. 241, Raleigh.

  • Shidei, T. & Kira, T. (eds) 1977. Primary productivity of Japanese forests. JIBP Synthesis series, Vol. 16, Tokyo.

  • Shugart, H. H. 1984. A theory of forest dynamics. Springer-Verlag, New York.

    Google Scholar 

  • Slota, R. P. 1985. Climatic control of leaf litter production. M. A. thesis. University of Georgia, Athens (Georgia).

  • Tarpley, J. D., Schneider, S. R. & Money, R. L. 1984. Global vegetation indices from the NOAA-7 meteorological satellite. J. Clim. Appl. Meteorol. 23: 491–494.

    Google Scholar 

  • Thomas, G. & Henderson-Sellers, A. 1987. Evaluation of satellite-derived land cover characteristics for global climate modelling. Climatic Change 11: 313–347.

    Google Scholar 

  • Townshend, J. R. G. & Tucker, C. J. 1984. Objective assessment of advanced very high resolution radiometer data for land cover mapping. Int. J. Remote Sens. 5: 492–504.

    Google Scholar 

  • Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8: 127–150.

    Google Scholar 

  • Tucker, C. J. 1980. A critical review of remote sensing and other methods for non-destructive estimation of standing crop biomass. Grass Forage Science 35: 177–182.

    Google Scholar 

  • Tucker, C. J., Townshend, J. R. G. & Goff, T. E. 1985a. African landcover classification using satellite data. Science 227: 369–375.

    Google Scholar 

  • Tucker, C. J. Vanpraet, C. L., Sharman, M. J. & Ittersum, G. 1985b. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Environ. 17: 233–249.

    Google Scholar 

  • Tucker, C. J., Fung, I. Y., Keeling, C. D. & Gammon, R. H. 1986. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 319: 195–199.

    Google Scholar 

  • Tucker, C. J. & Sellers, P. J. 1986. Satellite remote sensing of primary production. Int. J. Remote Sensing, 7: 1395–1416.

    Google Scholar 

  • Turner, M. G. 1987. Land-use changes and net primary production in the Georgia (USA) landscape, 1935–1982. Environ. Management 11: 237–247.

    Google Scholar 

  • UNESCO 1969. Vegetation map of the Mediterranean zone. UNESCO, Paris.

    Google Scholar 

  • UNESCO 1981a. Vegetation map of Africa. UNESCO, Paris.

    Google Scholar 

  • Walter, H. 1968 Die Vegetation der Erde in öko-physiologischer Betrachtung, Vol. 2: Die gemäßigten und arktischen Zonen. VEB Gustav-Fischer-Verlag, Jena.

    Google Scholar 

  • Walter, H. 1973. Die Vegetation der Erde in öko-physiologischer Betrachtung, Vol. 1: Die tropischen und subtropischen Zonen, 3rd ed. Gustav-Fischer-Verlag, Stuttgart.

    Google Scholar 

  • Walter, H. 1984. Vegetation of the earth. 3rd ed. Springer-Verlag, New York.

    Google Scholar 

  • Waring, R. H., Emmingham, W. H., Gholz, H. L. & Grier, C. C. 1978. Variation in maximum leaf area of coniferous forests in Oregon and its ecological significance. Forest Science 24: 131–140.

    Google Scholar 

  • Waring, R. H. & Schlesinger, W. H. 1985. Forest ecosystems: concepts and management. Academic Press, Orlando (Florida).

    Google Scholar 

  • Whitford, W. G., Meentemeyer, V., Seastedt, T. R., Cromack, K., Crossley, D. A.Jr, Santos, P., Todd, R. L. & Waide, J. B. 1981. Exceptions to the AET model: deserts and clear-cut forest. Ecology 62: 275–277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Box, E.O., Holben, B.N. & Kalb, V. Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80, 71–89 (1989). https://doi.org/10.1007/BF00048034

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048034

Keywords

Navigation