Skip to main content
Log in

Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus

  • Response to CO2 Enrichment: Interaction With Soil and Atmospheric Conditions
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The continuing increase in atmospheric carbon dioxide concentration ([CO2]) and projections of possible future increases in global air temperatures have stimulated interest in the effects of these climate variables on plants and, in particular, on agriculturally important food crops. Mounting evidence from many different experiments suggests that the magnitude and even direction of crop responses to [CO2] and temperature is almost certain to be species dependent and very likely, within a species, to be cultivar dependent. Over the last decade, [CO2] and temperature experiments have been conducted on several crop species in the outdoor, naturally-sunlit, environmentally controlled, plant growth chambers by USDA-ARS and the University of Florida, at Gainesville, Florida, USA. The objectives for this paper are to summarize some of the major findings of these experiments and further to compare and contrast species responses to [CO2] and temperature for three diverse crop species: rice (Oryza sativa, L.), soybean (Glycine max, L.) and citrus (various species). Citrus had the lowest growth and photosynthetic rates but under [CO2] enrichment displayed the greatest percentage increases over ambient [CO2] control treatments. In all three species the direct effect of [CO2] enrichment was always an increase in photosynthetic rate. In soybean, photosynthetic rate depended on current [CO2] regardless of the long-term [CO2] history of the crop. In rice, photosynthetic rate measured at a common [CO2], decreased with increasing long-term [CO2] growth treatment due to a corresponding decline in RuBP carboxylase content and activity. Rice specific respiration decreased from subambient to ambient and superambient [CO2] due to a decrease in plant tissue nitrogen content and a decline in specific maintenance respiration rate. In all three species, crop water use decreased with [CO2] enrichment but increased with increases in temperature. For both rice and soybean, [CO2] enrichment increased growth and grain yield. Rice grain yields declined by roughly 10 % per each 1 °C rise in day/night temperature above 28/21 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acock, B., Reddy, V. R., Hodges, H. F., Baker, D. N. & McKinion, J. M. 1985. Photosynthetic response of soybean canopies to full-season carbon dioxide enrichment. Agron. J. 77: 942–947.

    Google Scholar 

  • Ackerson, R. C., Havelka, U. D. & Boyle, M. G. 1984. CO2-enrichment effects on soybean physiology. II. Effects of stage-specific exposure. Crop Sci. 24: 1150–1154.

    Google Scholar 

  • Akita, S. & Tanaka, I. 1973. Studies on the mechanism of differences in photosynthesis among species. IV. The differential response in dry matter production between 3 carbon and 4 carbon species to atmospheric carbon dioxide enrichment. Proc. Crop Sci. Soc. Jpn. 42: 228–295.

    Google Scholar 

  • Allen, L. H.Jr. 1979. Potentials of carbon dioxide enrichment. In: Barfield, B. J. & Gerber, J. F. (eds). Modification of the Aerial Environment of Crops, Monogr. 2, pp. 500–519. American Society of Agricultural Engineers, St. Joseph, Mich.

    Google Scholar 

  • Allen, L. H.Jr., Boote, K. J., Jones, J. W., Mishoe, J. W., Jones, P. H., Valle, R., Vu, C. V. & Campbell, W. J. 1983. Response of Vegetation to Carbon Dioxide-014. Effects of increased carbon dioxide on photosynthesis, transpiration, water-use efficiency and productivity of soybean. 1982. Joint Program of the Carbon Dioxide Research Division, U. S. Dept. of Energy, and the Agricultural Research Service, U. S. Dept. of Agriculture, in cooperation with University of Florida, Gainesville, 142 pp. 1465–1472.

    Google Scholar 

  • Allen, L. H.Jr., Jones, P. & Jones, J. W. 1985. Rising Atmospheric CO2 and Evapotranspiration. In: Advances in Evapotranspiration. Proceedings of the National Conference on Advances in Evapotranspiration. ASAE Pub. 14–85. Amer. Soc. Agric. Eng., St. Joseph, MI.

    Google Scholar 

  • Allen, L. H.Jr., Boote, K. J., Jones, J. W., Jones, P. H., Valle, R. R., Acock, B., Rogers, H. H. & Dahlman, R. C.. 1987. Response of vegetation to rising carbon dioxide: Photosynthesis, biomass, and seed yield of soybean. Global Biogeochemical Cycles 1: 1–14.

    Google Scholar 

  • Allen, L. H.Jr. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Qual. 19: 15–34.

    Google Scholar 

  • Allen, L. H.Jr., Valle, R. R., Mishoe, J. W., Jones, J. W. & Jones, P. H. 1990a. Soybean leaf gas exchange responses to CO2 enrichment. Soil and Crop Sci. Soc. Fla. Proc. 49: 192–198.

    Google Scholar 

  • Allen, L. H.Jr., Bisbal, E. C., Campbell, W. J. & Boote, K. J. 1990b. Carbon dioxide effects on soybean developmental stages and expansive growth. Soil & Crop Sci. Soc. Fla. Proc. 49: 124–131.

    Google Scholar 

  • Allen, L. H.Jr., Bisbal, E. C., Boote, K. J. & Jones, P. H. 1991. Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agron. J. 83: 875–883.

    Google Scholar 

  • Amthor, J. S. 1991. Respiration in a future, higher-CO2 world. Plant, Cell Environ. 14: 13–20.

    Google Scholar 

  • Baker, D. N., Allen, L. H.Jr. & Lambert, J. R. 1982. Effects of Increased CO2 on Photosynthesis and Agricultural Productivity-013, vol II, part 6, Environmental and Societal Consequences of a Possible CO2 Induced Climate Change. Rep. DOE/EV/10019–6, US Dept. of Energy, Carbon Dioxide Res. Div., Washington, D. C. 104 pp.

    Google Scholar 

  • Baker, J. T., Allen, L. H.Jr., Boote, K. J., Rowland-Bamford, A. J.. Jones, J. W., Jones, P. H., Bowes, G. & Laugel, F. 1989a. Response of Vegetation to Carbon Dioxide-053. Temperature and CO2 effects on rice. 1988. Joint Program of the Carbon Dioxide Research Division, U. S. Dept. of Energy, and the Agricultural Research Service, U. S. Dept. of Agriculture, in cooperation with University of Florida, Gainesville, 111 pp.

    Google Scholar 

  • Baker, J. T., Allen, L. H.Jr., Boote, K. J., Jones, P. & Jones, J. W. 1989b. Response of soybean to air temperature and carbon dioxide concentration. Crop Sci. 29: 98–105.

    Google Scholar 

  • Baker, J. T., Allen, L. H.Jr., Boote, K. J., Jones, P. & Jones, J. W. 1989b. Rice Photosynthesis and evapotranspiration in subambient, ambient, and superambient carbon dioxide concentrations. Agron. J. 82: 834–840.

    Google Scholar 

  • Baker, J. T., Allen, L. H.Jr., Boote, K. J., Jones, J. W. & Jones, P. 1990b. Developmental responses of rice to photoperiod and carbon dioxide concentration. Agric. and For. Meterol. 50: 201–210.

    Google Scholar 

  • Baker, J. T., Allen, L. H.Jr. & Boote, K. J. 1990c. Growth and yield responses of rice to subambient, ambient, and superambient carbon dioxide concentrations. J. Agric. Sci., Camb. 115: 313–320.

    Google Scholar 

  • Baker, J. T., Allen, L. H.Jr., Boote, K. J., Rowland-Bamford, A. J., Waschmann, R. S., Jones, J. W., Jones, P. H. & Bowes, G. 1990d. Response of Vegetation to Carbon Dioxide-060. Temperature effects on rice at elevated CO2 Concentration. 1989. Joint Program of the Carbon Dioxide Research Division, U. S. Dept. of Energy, and the Agricultural Research Service, U. S. Dept. of Agriculture, in cooperation with the University of Florida, Gainesville, 60 pp.

    Google Scholar 

  • Baker, J. T., Laugel, F., Boote, K. J. & Allen, L. H.Jr. 1992a. Effects of daytime carbon dioxide concentration on dark respiration of rice. Plant, Cell Environ. 15: 231–239.

    Google Scholar 

  • Baker, J. T., Allen, L. H. Jr. & K. J. Boote. 1992b. Response of rice to CO2 and temperature. Agric. and For. Meterol. 52 (In Press).

  • Baker, J. T., Allen, L. H. Jr. & K. J. Boote. 1992c. Temperature effects on rice at elevated CO2 Concentration. J. Exp. Bot. 43 (In Press).

  • Brakke, M. & Allen, L. H. Jr. 1991. Gas exchange of citrus seedlings at different temperatures, vapor pressure deficits, and soil water contents. (In Review).

  • Bunce, J. A. 1990. Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann. Bot. 65: 637–642.

    Google Scholar 

  • Campbell, W. J., Allen, L. H. Jr. & Bowes, G. 1987. Effects of short-term and long-term exposures to varying CO2 concentrations on soybean photosynthesis. In: Biggins, J. (ed). Progress in photosynthesis. IV. 5: 253–256. Proc. VIIth International Congress on Photosynthesis. Providence, RI.

  • Campbell, W. J., Allen, L. H.Jr. & Bowes, G. 1988. Effects of CO2 concentration on ribisco activity, amount, and photosynthesis in soybean leaves. Plant Physiol. 88: 1310–1316.

    Google Scholar 

  • Campbell, W. J., Allen, L. H.Jr. & Bowes, G. 1990. Response of soybean canopy photosynthesis to CO2 concentration, light, and temperature. J. Exp. Bot. 41: 427–433.

    Google Scholar 

  • Clough, J. M., Peet, M. M. & Kramer, P. J. 1981. Effects of high atmospheric CO2 and sink size on rates of photosynthesis of soybean cultivar. Plant Physiol. 67: 1007–1010.

    Google Scholar 

  • Cooper, R. L. & Brun, W. A. 1967. Response of soybeans to a carbon dioxide-enriched atmosphere. Crop Sci. 7: 455–457.

    Google Scholar 

  • Cure, J. D. 1985. Carbon dioxide doubling response: A crop survey. In: Strain, B. R. & Cure, J. D. (eds). Direct effects of increasing carbon dioxide on vegetation. p. 99–116. DOE/ER-0238. U. S. Dep. of Energy, Carbon Dioxide Res. Div., Washington, D. C.

    Google Scholar 

  • Curry, R. B., Peart, R. M., Jones, J. W., Boote, K. J. & Allen, L. H.Jr. 1990a. Simulation as a tool for analyzing crop responses to climate change. Trans. ASAE 33: 981–900.

    Google Scholar 

  • Curry, R. B., Peart, R. M., Jones, J. W., Boote, K. J. & Allen, L. H.Jr. 1990b. Response of crop yield to predicted changes in climate and atmospheric CO2 using simulation. Trans. ASAE 33: 1383–1390.

    Google Scholar 

  • Hansen, J., Fung, I., Lacis, A., Lebedeff, S., Rind, D., Ruedy, R., Russell, G. & P., Stone. 1988. Global climate changes as forecast by the GISS 3-D model. J. Geophys. Res. 98(08): 9341–9364.

    Google Scholar 

  • Hardman, L. L. & Brun, W. A. 1971. Effect of atmospheric carbon dioxide enrichment at different developmental stages on growth and yield components of soybeans. Crop Sci. 11: 886–888.

    Google Scholar 

  • Havelka, U. D., Ackerson, R. C., Boyle, M. G. & Wittenbach, V. A. 1984. CO2-enrichment effects on soybean physiology. I. Effects of long-term CO2 exposure. Crop Sci. 24: 1146–1149.

    Google Scholar 

  • Hofstra, G. & Hesketh, J. D. 1975. The effects of temperature and CO2 enrichment on photosynthesis in soybean. p. 71–80. In: Marcelle, R. (ed) Environmental and biological control of photosynthesis. Dr. W. Junk Publ., The Hague.

    Google Scholar 

  • Hrubec, T. C., Robinson, J. M. & Donaldson, R. P. 1985. Effects of CO2 enrichment and carbohydrate content on the dark respiration of soybeans. Plant Physiol. 79: 684–689.

    Google Scholar 

  • Idso, S. B. 1991. The aerial fertilization effect of CO2 and its implications for global carbon cycling and maximum greenhouse warming. Bul. Am. Meterol. Soc. 72: 962–965.

    Google Scholar 

  • Idso, S. B. & Kimball, B. A. 1991a. Effects of two and a half years of atmospheric CO2 enrichment on the root density distribution of three-year old sour orange trees. Agric. For. Meterol. 55: 345–349.

    Google Scholar 

  • Idso, S. B. & Kimball, B. A. 1991b. Downward regulation of photosynthesis and growth at high CO2 levels. No evidence for either phenomenon in three-year study of sour orange trees. Plant Physiol. 96: 990–992.

    Google Scholar 

  • Idso, S. B., Kimball, B. A. & Allen, S. G. 1991a. CO2 enrichment of sour orange trees: 2. 5 years into a long-term experiment. Plant Cell Environ. 14: 351–353.

    Google Scholar 

  • Idso, S. B., Kimball, B. A. & Allen, S. G. 1991b. Net photosynthesis of sour orange trees maintained in atmospheres of ambient and elevated CO2 concentration. Agric. For. Meterol. 54: 95–101.

    Google Scholar 

  • Imai, K. & Murata, Y. 1976. Effect of carbon dioxide concentration on growth and dry matter production in crop plants. I. Effects on leaf area, dry matter, tillering, dry matter distribution ratio, and transpiration. Jpn. J. Crop Sci. 45: 598–606.

    Google Scholar 

  • Imai, K. & Murata, Y. 1979a. Effect of carbon dioxide concentration on growth and dry matter production in crop plants. 6. Effect of oxygen concentration on the carbon dioxide-dry matter production relationship in some C3 and C4 crop species. Jpn. J. Crop Sci. 48: 58–65.

    Google Scholar 

  • Imai, K. & Murata, Y. 1979b. Effect of carbon dioxide concentration on growth and dry matter production in crop plants. 7. Influence of light intensity and temperature on the effect of carbon dioxide enrichment in some C3 and C4 species. Jpn. J. Crop. Sci. 48: 409–417.

    Google Scholar 

  • Imai, K., Coleman, D. F. & Yanagisawa, T. 1985. Increase of atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L.). Jpn. J. Crop Sci. 54: 413–418.

    Google Scholar 

  • Jones, P., Jones, J. W., Allen, L. H.Jr. & Mishoe, J. W. 1984. Dynamic computer control of closed environment plant growth chambers. Design and verification. Trans. ASAE 27: 879–888.

    Google Scholar 

  • Jones, P., Allen, L. H.Jr., Jones, J. W. & Valle, R. 1985a. Photosynthesis and transpiration responses of soybean canopies to short-term and long-term CO2 treatments. Agron. J. 77: 119–126.

    Google Scholar 

  • Jones, P., Allen, L. H.Jr. & Jones, J. W. 1985b. Responses of soybean canopy photosynthesis and transpiration to whole-day temperature changes in different CO2 environments. Agron. J. 77: 242–249.

    Google Scholar 

  • Jones, P., Allen, L. H.Jr. & Jones, J. W. 1985c. Seasonal carbon and water balances of soybeans grown under stress treatments in sunlit chambers. Trans. ASAE. 28: 2021–2028.

    Google Scholar 

  • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heinmann, M., Mook, W. G. & Roeloffzen, H. 1989. A three dimensional model of atmospheric CO2 transport based on observed winds: Analysis of data. In: Peterson, D. H. (ed). Aspects of climate variability in the Pacific and the Western Americas. p. 165–236. Geophysical Monog. 55, American Geophysical Union, Washington, D. C.

    Google Scholar 

  • Kimball, B. A. 1983a. Carbon dioxide and agricultural yield: An assemblage of 430 prior observations. Agron. J. 75: 779–788.

    Google Scholar 

  • Kimball, B. A. 1983b. Carbon dioxide and agricultural yield: An assemblage and analysis of 770 prior observations. Rep. 14, U. S. Water Conservation Lab., USDA, Phoenix, AZ. 71 pp.

    Google Scholar 

  • Kishitani, S. & Shibles, R. 1986. Respiration rates of soybean cultivars. Crop Science 26, 580–583.

    Google Scholar 

  • Koch, K. E., White, D. W., Jones, P. H. & Allen, L. H.Jr. 1983. CO2 enrichment of Carrizo Citrange and Swingle Citrumelo rootstocks. Proc. Fla. State Hort. Soc. 96: 37–40.

    Google Scholar 

  • Koch, K. E., Jones, P. H., Avigne, W. T. & Allen, L. H.Jr. 1986. Growth, dry matter partitioning, and diurnal activities of RuBP carboxylase in citrus seedlings maintained at two levels of CO2. Physiol. Plant. 67: 477–484.

    Google Scholar 

  • Koch, K. E., Allen, L. H.Jr., Jones, P. & Avigne, W. T. 1987. Growth of citrus rootstock (Carrizo Citrange) seedlings during and after long-term CO2 enrichment. J. Amer. Soc. Hort. Sci. 112: 77–82.

    Google Scholar 

  • Lemon, E. R. 1983. Carbon dioxide and plants: The response of plants to rising levels of atmospheric carbon dioxide. In: Lemon, E. R. (ed). AAAS Selected Symp. 84. Westview Press, Boulder, CO.

    Google Scholar 

  • Manabe, S. & Wetherald, R. T. 1987. Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J. Atmos. Sci. 44: 1211–1235.

    Google Scholar 

  • Mauney, J. R., Fry, K. E. & Guin, G. 1978. Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum, and sunflower. Crop Sci. 18: 259–263.

    Google Scholar 

  • McCree, K. J. 1983. Carbon balance as a function of plant size in sorghum plants. Crop Sci. 23: 1173–1177.

    Google Scholar 

  • Oechel, W. C. & Strain, B. R. 1985. Native species responses to increased atmospheric carbon dioxide concentrations. In: Strain, B. R. & Cure, J. D. (eds). Direct effects of increasing carbon dioxide on vegetation. p. 117–154. DOE/ER-0238. U. S. Dep. of Energy, Carbon Dioxide Res. Div., Washington DC.

    Google Scholar 

  • Peet, M. M., Huber, S. C. & Patterson, D. T. 1986. Acclimation to high CO2 in monecious cucumbers. II. Carbon exchange rate, enzyme activities, and starch and nutrient concentrations. Plant Physiol. 80: 63–67.

    Google Scholar 

  • Pearcy, R. W. & Björkman, O. 1983. Physiological effects. In: Lemon, E. R. (ed). Carbon dioxide and plants: The response of plants to rising levels of atmospheric carbon dioxide. pp. 65–105. AAAS Selected Symp. 84. Westview Press. Boulder, CO.

    Google Scholar 

  • Reuveni, J. & Gale, J. 1985. The effect of high levels of carbon dioxide on dark respiration and growth of plants. Plant, Cell Environ. 8: 623–628.

    Google Scholar 

  • Rogers, H. H., Bingham, G. E., Cure, J. D., Smith, J. M. & Surano, K. A. 1983. Response of selected plant species to elevated carbon dioxide in the field. J. Environ. Qual. 12: 569–574.

    Google Scholar 

  • Rogers, H. H., Sionit, N., Cure, J. D., Smith, J. M. & Bingham, G. E. 1984. Influence of elevated carbon dioxide on water relations of soybeans. Plant Physiol. 74: 233–238.

    Google Scholar 

  • Rosenberg, N. J. 1981. The increasing CO2 concentration in the atmosphere and its implications on agricultural productivity. I. Effects on photosynthesis, transpirtion, and water use efficiency. Clim. Change 3: 265–279.

    Google Scholar 

  • Rotty, R. M. & Marland, G. 1986. Fossil fuel combustion: Recent amounts, patterns, and trends of CO2. In: Trabalka, J. R. & Reichle, D. E. (eds). pp. 474–490. The Changing Carbon Cycle a Global Analysis. Springer-Verlag.

  • Rowland-Bamford, A. J., Allen, L. H.Jr., Baker, J. T. & Bowes, G. 1991. Acclimation of rice to changing atmospheric carbon dioxide concentration. Plant Cell Environ. 14: 577–583.

    Google Scholar 

  • Sage, R. F., Sharkey, T. D. & Seemann, J. R. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiol. 89: 590–596.

    Google Scholar 

  • Satake, T. & Yoshida, S. 1978. High temperature induced sterility in indica rices at flowering. Jpn. J. Crop Sci. 47: 6–17.

    Google Scholar 

  • Schlesinger, W. 1984. Soil organic matter: A source of atmospheric CO2. In: Woodwell, G. M. (ed). The role of terrestrial vegetation in the global carbon cycle: Methods for appraising changes. SCOPE Vol. 23, SCOPE-International Council of Scientific Unions pp. 111–127. John Wiley, New York.

    Google Scholar 

  • Schnier, H. F., Dingkuhn, M., De, Datta, S. K., Mengel, K., Wijangco, E. & Javellana, C. 1990. Nitrogen economy and canopy carbon dioxide assimilation of tropical lowland rice. Agron. J. 82: 451–459.

    Google Scholar 

  • Sionit, N., Strain, B. R. & Flint, E. P. 1987a. Interaction of temperature and CO2 enrichment on soybean: Growth and dry matter partitioning. Can. J. Plant Sci. 67: 59–67.

    Google Scholar 

  • Sionit, N., Strain, B. R. & Flint, E. P. 1987b. Interaction of temperature and CO2 enrichment on soybean: Photosynthesis and seed yield. Can. J. Plant Sci. 67: 629–636.

    Google Scholar 

  • Spencer, W. & Bowes, G. 1986. Photosynthesis and growth of water hyacinth under CO2 enrichment. Plant Physiol. 82: 528–533.

    Google Scholar 

  • Tolbert, N. E. & Zelitch, I. 1983. Carbon metabolism. In: E. R., Lemon (ed) Carbon dioxide and plants: The response of plants to rising levels of atmospheric carbon dioxide. pp. 21–64. AAAS Selected Symp. 84. Westview Press, Boulder, CO.

    Google Scholar 

  • Trabalka, J. R., Edmonds, J. A., Reilly, J. M., Gardner, R. H. & Reichle, D. E. 1986. Atmospheric CO2 projections with glogally averaged carbon cycle models. In: Trabalka, J. R. & Reichle, D. E. (eds). The Changing Carbon Cycle a Global Analysis. pp. 534–560. Springer-Verlag.

  • Valle, R., Mishoe, J. W., Campbell, W. J., Jones, J. W. & Allen, L. H.Jr. 1985a. Photosynthetic responses of Bragg soybean leaves adapted to different CO2 environments. Crop Sci. 25: 333–339.

    Google Scholar 

  • Valle, R., Mishoe, J. W., Jones, J. W. & Allen, L. H.Jr. 1985b. Transpiration rate and water-use efficiency of soybean leaves adapted to different CO2 environments. Crop Sci. 25: 477–482.

    Google Scholar 

  • Waggoner, P. E. 1984. Agriculture and carbon dioxide. Am. Sci. 72: 179–184.

    Google Scholar 

  • Washington, W. M. and Meehl, G. A. 1984. Seasonal cycle experiment on the climatic sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J Geophys. Res. 89: 9475–9503.

    Google Scholar 

  • Wilson, C. A. & Mitchell, J. F. B. 1987. A doubled CO2 climate sensitivity experiment with a global climate model, including a simple ocean. J. Geophys. Res. 92: 13,315–13,343.

    Google Scholar 

  • Witter, S. H. 1990. Carbon dioxide and climate change: An agricultural perspective. J. Soil Water Conserv. 35: 116–120.

    Google Scholar 

  • Witter, S. H. 1983. Rising atmospheric CO2 and crop productivity. HortScience. 18: 667–673.

    Google Scholar 

  • Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. Oecologia 44: 68–74.

    Google Scholar 

  • Yamagishi, J., Ishii, R. & Kumura, A. 1988. Respiration of soybean plants in relation to their physiological conditions. I. The effects of nitrogen supply and plant age on the behavior of respiration in the dark period. Jpn. J. Crop Sci. 57: 355–359.

    Google Scholar 

  • Yoshida, S. 1981. Fundamentals of rice crop science. International Rice Research Institute. Los Baños, Philippines.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, J.T., Allen, L.H. Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus. Vegetatio 104, 239–260 (1993). https://doi.org/10.1007/BF00048156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048156

Keywords

Navigation