Skip to main content
Log in

The chemistry of aquatic phosphate: inorganic processes in rivers

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phosphate levels in turbid rivers with low calcium concentrations are controlled by a solid ferric hydroxide-phosphate solution present in colloidal suspensions or suspended particulates. A chemical model, based on this behavior, is consistent with data from dialyzed suspensions of iron and phosphorus prepared in the laboratory as well as from the Amazon, Zaire, Orinoco, Sepik, Delaware, Hudson, Negro, and Mullica rivers. Data indicate that solid Fe/P ratios are related to solid activity coefficients by an exponential parameter, y, which represents the deviation of solid-solution from ideality. The model is mathematically consistent with Langmuir and Freundlich sorption isotherms under equilibrium conditions, and demonstrates that the isotherm parameters consist of a combination of selected constants and variables defined by solution theory. The reciprocal of the model parameter-y is shown to be equivalent to the exponential parameter in a Freundlich isotherm. The Langmuir parameter and Freundlich exponential parameter are related through the model parameter-y in systems at constant pH and ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R. J., A. M. Posner & J. P. Quirk, 1967. Adsorption of potential-determining ions at the ferric oxideaqueous electrolyte interface. J. Phys. Chem. 71: 550–558.

    Google Scholar 

  • Atkinson, R. J., A. M. Posner & J. P. Quirk, 1972. Kinetics of isotopic exchange of phosphate at the α-FeOOH — aqueous solution interface. J. Inorg. Nucl. Chem. 34: 2201–2211.

    Google Scholar 

  • Atkinson, R. J., R. L. Parfitt & R. St. C. Smart, 1974. Infrared study of phosphate adsorption on goethite. J. Chem. Soc. Faraday Trans. 170: 1472–1479.

    Google Scholar 

  • Bache, B. W., 1963. Aluminum and iron phosphate studies relating to soils. I. Solution and hydrolysis of variscite and strengite. J. Soil Sci. 14: 113–123.

    Google Scholar 

  • Barrow, N. J. & T. C. Shaw, 1975. The slow reaction between soil and anions: 2. Effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Sci. 119: 167–177.

    Google Scholar 

  • Barrow, N. J., 1983. A mechanistic model for describing the sorption and desorption of phosphate by soil. J. Soil Sci. 34: 733–750.

    Google Scholar 

  • Barrow, N. J., 1983. On the reversibility of phosphate sorption by soils. J. Soil Sci. 34: 751–758.

    Google Scholar 

  • Beck, K. C., J. H. Rueter & E. M. Purdue, 1974. Organic and inorganic geochemistry of some coastal plain rivers of the southeastern United States. Geochim. Cosmoschim. Acta 38: 341–364.

    Google Scholar 

  • Berner, R. A., 1971. Principles of Chemical Sedimentology. McGraw-Hill Co. 240 pp.

  • Blanchard, R. W. & G. K. Stearman, 1984. Ion products and solid-phase activity to describe phosphate sorption by soils. Soil Sci. Soc. Amer. J. 48: 1253–1258.

    Google Scholar 

  • Bolan, N. S., N. J. Barrow & A. M. Posner, 1985. Describing the effect of time on sorption of phosphate by iron and aluminum hydroxides. J. Soil Sci. 36: 187–197.

    Google Scholar 

  • Breeuwsma, A. & J. Lyklema, 1973. Physical and chemical adsorption of ions in the electrical double layers on hematite (α-Fe2O3). J. Colloid. Interface Sci. 44: 437–448.

    Google Scholar 

  • Broecker, W. S. & T. -H. Peng, 1982. Tracers in the sea. Eldigio Press, New York, 690 pp.

    Google Scholar 

  • Burns, P. A. & N. Solomon, 1969. Phosphate adsorption by Kaolin in saline environments. Proc. Nat. Shellfish Assn. 59: 121–125.

    Google Scholar 

  • Butler, E. I. & S. Tibbitts, 1972. Chemical survey of the Tamar estuary. J. Mar. Biol. Assn. U.K. 52: 681–699.

    Google Scholar 

  • Callender, E. & D. E. Hammond, 1982. Nutrient exchange across the sediment-water interface in the Potomac River estuary. Estuar. coast. Shelf Sci. 15: 395–413.

    Google Scholar 

  • Callender, E., 1982. Benthic phosphorus regeneration in the Potomac river estuary. In P. G. Sly (ed.), Sediment/Freshwater Interaction. Developments in Hydrobiology 9. Dr W. Junk Publishers, The Hague: 431–446. Reprinted from Hydrobiologia 91/92.

    Google Scholar 

  • Chang, S. C. & M. L. Jackson, 1957. Solubility product of iron phosphate. Proc. Soil Sci. Soc. Amer. 21: 265–269.

    Google Scholar 

  • Carritt, D. E. & S. Goodgal, 1954. Sorption reactions and some ecological implications. Deep Sea Res. 1: 224–243.

    Google Scholar 

  • Chase, E. M. & F. L. Sayles, 1980. Phosphorus in suspended sediments of the Amazon River. Estuar. Coast. Mar. Sci. 11: 383–391.

    Google Scholar 

  • Chen, Y. S. R., J. N. Butler & W. Stumm, 1975. Kinetic study of phosphate reactions with aluminum oxide and Kaolinite. Envir. Sci. Technol. 7: 327–332.

    Google Scholar 

  • Coman, R. N. J. & J. J. Middleburg, 1987. Sorption of trace metal on calcite: Applicability of the surface precipitation model. Geochim. Cosmochim. Acta 51: 2581–2591.

    Google Scholar 

  • Crosby, S. A., D. R. Glasson, A. H. Cuttler, I. Butler, M. Turner, M. Whitfield & G. E. Millward, 1983. Surface areas and porosities of Fe(III)- and Fe(II)-derived oxyhydroxides. Envir. Sci. Technol. 17: 709–713.

    Google Scholar 

  • Crosby, S. A., G. E. Millward, E. I. Butler, D. R. Turner & M. Whitfield, 1984. Kinetics of phosphate adsorption by iron oxyhydroxides in aqueous systems. Estuar. Coast. Shelf Sci. 19: 257–270.

    Google Scholar 

  • Culberson, C. H., J. H. Sharp, T. M. Church & B. W. Lee, 1982. Data from the Salsx Cruises May 1978–July 1980: University of Delaware Oceanographic Data Report Number 2. University of Delaware, Newark, DE., 53 pp.

    Google Scholar 

  • Davis, J. A., C. C. Fuller & A. K. Cook, 1987. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd+2 and subsequent solid solution formation. Geochim. Cosmochim. Acta 51: 1477–1490.

    Google Scholar 

  • Denbigh, K., 1981. The Principles of Chemical Equilibrium. Cambridge University Press, New York, 494 pp.

    Google Scholar 

  • Farley, K. J., D. A. Dzombak & F. M. M. Morel, 1985. A surface precipitation model for the sorption of cations on metal oxides. J. Colloid. Interf. Sci. 106: 226–242.

    Google Scholar 

  • Fox, L. E., S. L. Sager & S. C. Wofsy, 1985. Factors controlling the concentrations of soluble phosphorus in the Mississippi estuary. Limnol. Oceanogr. 30: 826–832.

    Google Scholar 

  • Fox, L. E., S. F. Sager & S. C. Wofsy, 1986. The chemical control of soluble phosphorus in the Amazon estuary. Geochim. Cosmochim. Acta 50: 783–794.

    Google Scholar 

  • Fox, L. E., 1988. Solubility of colloidal ferric hydroxide. Nature 333: 442–444.

    Google Scholar 

  • Fox, L. E., 1988. The solubility of colloidal ferric hydroxide and its relevance to iron concentrations in river water. Geochim. Cosmochim. Acta 52: 771–777.

    Google Scholar 

  • Fox, L. E., 1989. A model for inorganic control of phosphate concentrations in river waters. Geochim. Cosmochim. Acta 53: 417–428.

    Google Scholar 

  • Fox, L. E., 1990. Geochemistry of dissolved phosphate in the Sepik River and Estuary, Papua, New Guinea. Geochim. Cosmochim. Acta 54: 1019–1024.

    Google Scholar 

  • Fox, L. E., 1991. Phosphorus chemistry in the tidal Hudson River. Geochim. Cosmochim. Acta 55: 1529–1538.

    Google Scholar 

  • Froelich, P. N., 1986. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. In S. Nixon (ed.), Symposium on comparative ecology of freshwater and coastal marine ecosystems. Limnol. Oceanogr. (special edition).

  • Garrels, R. M. & C. L. Christ, 1965. Solutions, Minerals, and Equilibria. Freeman, Cooper, & Co., San Francisco, 450 pp.

    Google Scholar 

  • Gessner, F., 1960. Untersuchungen uber den phosphathaushalt des Amazonas. Int. Revue ges. Hydrobiol. 45: 339–345.

    Google Scholar 

  • Glasstone, S., 1947. Thermodynamics for Chemists. D. Van Nostrand Co., Inc., New York, 524 pp.

    Google Scholar 

  • Haseman, J. F., E. H. Brown & C. D. Whitt, 1950. Some reactions of phosphate with clays and hydrous oxides of iron and aluminum. Soil Sci. 70: 257–271.

    Google Scholar 

  • Hingston, F. J., R. J. Atkinson, A. M. Posner & J. P. Quirk, 1967. Specific adsorption of anions. Nature 215: 1459–1461.

    Google Scholar 

  • Hsu, P. H., 1965. Fixation of phosphate by aluminum and iron in acidic soils. Soil Sci. 99: 398–402.

    Google Scholar 

  • Hsu, P. H., 1976. Comparison of iron and aluminum in precipitation of phosphate from solution. Water Resources 10: 903–907.

    Google Scholar 

  • Jitts, H. R., 1959. The adsorption of phosphate by estuarine bottom deposits. Aust. J. Mar. Freshwat. Res. 10: 7–21.

    Google Scholar 

  • Jones, B. F., V. C. Kennedy & G. W. Zellweger, 1974. Comparison of observed and calculated concentrations of dissolved Al and Fe in stream water. Wat Resour. Res. 10: 790–793.

    Google Scholar 

  • Kittrick, J. A. & M. L. Jackson, 1956. Electron-microscope observations of the reaction of phosphate with minerals, leading to a unified theory of phosphate fixation in soils. J. Soil Sci. 7: 81–89.

    Google Scholar 

  • Ku, W. C., F. A. DiGiano & T. H. Feng, 1978. Factors affecting phosphorus adsorption equilibria in lake sediment. Wat. Res. 12: 1069–1074.

    Google Scholar 

  • Kuo, S. & E. G. Lotse, 1974. Kinetics of phosphate adsorption and desorption by lake sediments. Soil Sci. Soc. Amer. Proc. 38: 50–54.

    Google Scholar 

  • Langmuir, D., 1981. The power exchange function: a general model for metal adsorption onto geological materials. In D. H. Twari (ed.), Adsorption From Aqueous Solution. Plenum Press, 1–18.

  • Lean, D. R. S. & C. Nalewajko, 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish. Res. Bd Can. 33: 1312–1323.

    Google Scholar 

  • Lean, D. R. S. & E. White, 1983. Chemical and radio tracer measurements of phosphate uptake by lake plankton. Can. J. Fish. aquat. Sci. 40: 147–155.

    Google Scholar 

  • Lijklema, L. 1980. Interaction of orthophosphate with iron (III) and aluminum hydroxide. Envir. Sci. Technol. 14: 537–541.

    Google Scholar 

  • Lopez, J. C. S., 1989. Condiciones hidrogeoquimicas de la region estuarina-deltaica del Orinoco durante el mes de Noviembre de 1985. Ph.D. Thesis, Universidad de Oriente, Instituto Oceanografico de Venezuela, Cumana, Venezuela.

    Google Scholar 

  • Lorens, R. B., 1981. Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 45: 553–561.

    Google Scholar 

  • Mattingly, G. E. G., 1975. Labile phosphate in soils. Soil Sci. 119: 369–375.

    Google Scholar 

  • Millero, F. J. & D. R. Schreiber, 1982. Use of the ion pairing model to estimate activity coefficients of the ionic components of natural waters. Amer. J. Sci. 282: 1508–1540.

    Google Scholar 

  • Munns, D. N. & R. L. Fox, 1976. The slow reaction which continues after phosphate adsorption: kinetics and equilibrium in some tropical soils. Soil Sci. Soc. Amer. J. 40: 46–51.

    Google Scholar 

  • Music, S., A. Vertes, G. W. Simmons, I. Czako-Nagy, H. Leidheiser, 1982. Spectroscopic study of the formation of Fe(III) oxyhydroxides and oxides by hydrolysis of aqueous Fe(III) salt solutions. J. Colloid Interface Sci. 85: 256–266.

    Google Scholar 

  • Nagarajah, S., A. M. Posner & J. P. Quirk, 1968. Desorption of phosphate from kaolinite by citrate and bicarbonate. Soil Sci. Soc. Amer. Proc. 32: 507–510.

    Google Scholar 

  • Parfitt, R. L., R. J. Atkinson & R. St. C. Smart, 1975. The mechanisms of phosphate fixation by iron oxides. Soil Sci. Soc. Amer. Proc. 39: 837–841.

    Google Scholar 

  • Pomeroy, L. R., E. E. Smith & C. M. Grant, 1965. The exchange of phosphate between estuarine water and sediments. Limnol. Oceanogr. 10: 167–172.

    Google Scholar 

  • Rajan, S. S. S. & R. L. Fox, 1975. Phosphate adsorption by soils. II. Reactions in tropical soils. Soil Sci. Soc. Amer. Proc. 39: 846.

    Google Scholar 

  • Rajan, S. S. S. & J. H. Watkinson, 1976. Adsorption of selenite and phosphate on an allophane clay. Soil Sci. Soc. Amer. J. 40: 51–54.

    Google Scholar 

  • Rajan, S. S. S., 1975. Adsorption of divalent phosphate on hydrous aluminum oxide. Nature 253: 434–436.

    Google Scholar 

  • Rochford, D. J., 1951. Studies in Australian estuarine hydrology. I. Introduction and comparative features. Aust. J. mar. Freshwat. Res. 2: 1–116.

    Google Scholar 

  • Russell, R. S., J. B. Rickson & S. N. Andrew, 1954. Isotopic equilibria between phosphates in soil and their significance in the assessment of fertility by tracer methods. J. Soil Sci. 5: 85–105.

    Google Scholar 

  • Ryden, J. C. & J. K. Syers, 1977. Origin of the labile phosphate pool in soils. Soil Sci. 123: 353–361.

    Google Scholar 

  • Sholkovitz, E. R., R. Van Grieken & D. Eisma, 1978. The major-element composition of suspended matter in the Zaire River and Estuary. Neth. J. Sea Res. 12: 407–413.

    Google Scholar 

  • Shukla, S. S., J. K. Syers, J. D. H. Williams, D. E. Armstrong & R. F. Harris, 1971. Sorption of inorganic phosphate by lake sediments. Soil Sci. Soc. Amer. Proc. 35: 244–249.

    Google Scholar 

  • Sposito, G., 1980. Derivation of the Freundlich equation for ion exchange reactions in soils. Soil Sci. Soc. Am. J. 44: 652–654.

    Google Scholar 

  • Sposito, G., 1984. The Surface Chemistry of Soils. Oxford University Press, New York, 231 pp.

    Google Scholar 

  • Stallard, R. F. & J. M. Edmond, 1983. Geochemistry of the Amazon. 2. The influence of geology and weathering environments on the dissolved load. J. Geophys. Res. 88: 9671–9688.

    Google Scholar 

  • Stephensen, W., 1949. Certain effects of agitation upon the release of phosphate from mud. J. Mar. Biol. Assn. 28: 371–380.

    Google Scholar 

  • Stookey, L. L., 1970. Ferrozine — New spectrophotometric reagent for iron. Analyt Chem. 42: 779.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Fish. Res. Bd Can. 310 pp.

  • Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry: An introduction emphasizing chemical equilibrium in natural waters. J. Wiley & Sons, New York, 780 pp.

    Google Scholar 

  • Swenson, R. M., C. V. Cole & D. H. Sieling, 1949. Fixation of phosphate by iron and aluminum and inorganic ions. Soil Sci. 67: 3–22.

    Google Scholar 

  • Talibudeen, O., 1958. Isotopically exchangeable phosporus in soils. III. The fractionation of soil phosphorus. J. Soil Sci. 9: 120–129.

    Google Scholar 

  • Tandon, H. L. S. & L. T. Kurtz, 1968. Isotopic exchange characteristics of aluminum — and iron — bound fractions of soil phosphorus. Soil Sci. Soc. Amer. Proc. 32: 799–802.

    Google Scholar 

  • Taylor, R. W. & B. G. Ellis, 1978. A mechanism of phosphate adsorption on soil and anion exchange resin surface. Soil Sci. Soc. Amer. J. 42: 432–436.

    Google Scholar 

  • Truesdell, A. H. & C. L. Christ, 1968. Cation exchange in clays interpreted by regular solution theory. Amer. J. Sci. 266: 402–412.

    Google Scholar 

  • Van Bennekom, A. J., G. W. Berger, W. Helder & R. T. P. DeVries, 1978. Nutrient distribution in the Zaire Estuary and River plume. Neth. J. Sea Res. 12: 296–323.

    Google Scholar 

  • Wersin, P., L. Charlet, R. Karthein & W. Stumm, 1989. From adsorption to precipitation: Sorption of Mn or FeCO3. Geochim. Cosmochim. Acta 53: 2787–2796.

    Google Scholar 

  • Williams, J. D. H., J. K. Syers & T. W. Walker, 1967. Fractionation of soil inorganic phosphate by a modification of Chang and Jackson's procedure. Soil Sci. Soc. Amer. Proc. 31: 736–739.

    Google Scholar 

  • Williams, J. D. H., J. K. Syers & R. F. Harris, 1970. Adsorption and desorption of inorganic phosphorus by lake sediments in a 0.1 M NaCl system. Envir. Sci. Technol. 4: 517–519.

    Google Scholar 

  • Williams, J. D. H., J. M. Jaquet & R. L. Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish Res. Bd Can. 33: 413–429.

    Google Scholar 

  • Wormald, A. P. & H. P. Stirling, 1979. A preliminary investigation of nutrient enrichment in experimental sand columns and its effect on tropical intertidal bacteria and meiofauna. Estuar. Coast. Mar. Sci. 8: 441–453.

    Google Scholar 

  • Yates, D. E. & D. W. Healey, 1975. Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces. J. Colloid Interface Sci. 52: 221–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From a presentation given at the Third International Workshop on Phosphorus in Sediments, Woudscholten/Utrecht, The Netherlands, September 30, 1991, under the auspices of: International Association of Theoretical and Applied Limnology, Limnological Institute (Royal Netherlands Academy of Arts and Sciences), Institute for Inland Water Management and Waste Water Treatment, and the Netherlands Institute for Sea Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, L.E. The chemistry of aquatic phosphate: inorganic processes in rivers. Hydrobiologia 253, 1–16 (1993). https://doi.org/10.1007/BF00050718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050718

Key words

Navigation