Skip to main content
Log in

Acute effects of cyclosporin and cremophor EL on endothelial function and vascular smooth muscle in the isolated rat heart

  • Experimental Pharmacology
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

We studied the effects of cyclosporin dissolved in the vehicle used as an intravenous preparation, namely, cremophor EL, and cremophor alone on the basal coronary flow plus endothelial function and vascular smooth muscle response by examining their influence on 5-hydroxytryptamine (5-HT) and nitroglycerine (GTN) induced changes in coronary flow in the isolated rat heart. A total of 72 rat hearts were perfused with a modified Langendorf preparation. There was a 12.8±3% reduction in the basal coronary flow after 60 minutes of perfusion with the drug-free buffer (p=ns). A dose of 50 ng/ml of cremophor or cyclosporin gave a similar reduction in the flow (cremophor 9.2±0.7%, cyclosporin 12.7±2%). However, at higher concentrations cremophor caused dose-dependent coronary vasodilation, while cyclosporin had the opposite effect. The maximum effect after 1000 ng/ml of cyclosporin was a 48.7±0.6% decrease, and after an equivalent dose of cremophor a 24.8±2.2% increase in the flow. The vasodilatory response to 5-HT and GTN remained unchanged after 60 minutes of perfusion with the drug-free buffer (5-HT, before 33.3±2.5%, after 37.7±4.2%; GTN, before 34.3±2.5%, after 33.7±1.5%). A period of 60 minutes of perfusion with 500 ng/ml and 1000 ng/ml of cremophor caused a significant reduction in the 5-HT response without an appreciable change in the effect of GTN (500 ng/ml—5-HT, before 29.9±0.9% after 10.7±3.7%; GTN, before 32.3±1.9% after 31.8±3.5%; 1000 ng/ml—5-HT, before 29.7±0.6%, after 12.3±2.7%; GTN, before 33.3±2.8%, after 32.7±1.4%; p<0.001). The same concentration of cyclosporin not only reduced the 5-HT response but also reduced the vasodilation induced by GTN (500 ng/ml—5-HT, before 35.3±3.7%, after 1.6±5%; GTN, before 30.8±1.5%, after 11.2±2.7%; 1000 ng/ml—5-HT, before 32.8±1.9%, after -32.3±1.1%; GTN, before 35.7±0.8%, after 10.0±1.3%). We conclude that cremophor EL causes endothelial dysfunction in the isolated rat heart, and this effect may be aggravated by cyclosporin dissolved in cremophor. Cyclosporin with cremophor also leads to injury to vascular smooth muscle. The direct effect of cremophor is to cause coronary vasodilation, while cyclosporin causes dose-dependent coronary vasoconstriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamilton DV, Carmichael DJS, Evans DB, Caine BY. Hypertension in renal transplant recipients on cyclosporin A and corticosteroids and azathioprine. Transplant Proc 1982;14:597–600.

    PubMed  CAS  Google Scholar 

  2. Bellet M, Cabrol C, Sassano P, et al. Systemic hypertension after cardiac transplantation: Effect of cyclosporin on the renin-angiotensin-aldosterone system. Am J Cardiol 1985;56:927–937.

    Article  PubMed  CAS  Google Scholar 

  3. Bennett WM, Porter GA. Cyclosporin-associated hypertension. Am J Med 1988;85:131–133.

    Article  PubMed  CAS  Google Scholar 

  4. Shulman H, Striker G, Degg H, et al. Nephrotoxicity of cyclosporin A after allogenic bone marrow transplantation. N Engl J Med 1981;305:1392–1395.

    Article  PubMed  CAS  Google Scholar 

  5. Sweny P, Hooper J, Gross M, Varghese Z. Nephrotoxicity of cyclosporin A. Lancet 1981;1:663.

    Article  Google Scholar 

  6. Bennett WM, Pulliam JP. Cyclosporin nephrotoxicity. Ann Intern Med 1983;99:851–854.

    PubMed  CAS  Google Scholar 

  7. Vanrenterghem YL, Roels T, Lerut J, et al. Thromboembolic complications and haemostatic changes in cyclosporintreated cadaveric kidney allograft recipients. Lancet 1985;2:999.

    Article  Google Scholar 

  8. Zoja C, Furci L, Ghilardi F, et al. Cyclosporine-induced endothelial cell injury. Lab Invest 1986;55:455–462.

    PubMed  CAS  Google Scholar 

  9. Shulman H, Striker G, Joachim Deeg H, et al. Nephrotoxicity of cyclosporin A after allogeneic marrow transplantation. N Engl J Med 1981;305:1392–1395.

    Article  PubMed  CAS  Google Scholar 

  10. Bergstrand A, Bohmann SO, Farnsworth A, et al. Renal histopathology in kidney transplant recipients immunosuppressed with cyclosporin A. Clin Nephrol 1985;24:107–119.

    Google Scholar 

  11. Bossaller C, Förstermann U, Hertel R, et al. Cyclosporin A inhibits endothelium-dependent vasodilation and vascular prostacyclin production. Eur J Pharmacol 1989;165:165–169.

    Article  PubMed  CAS  Google Scholar 

  12. Dinh Xuan AT, Fan TPD, Higenbottam TW, et al. Cyclosporin in vitro reduces endothelium-dependent relaxation to acetylcholine but does not affect relaxation to nitrovasodilators. Transplantation Proc 1990;22:1723–1725.

    CAS  Google Scholar 

  13. Besarab A, Jarrell BE, Hirsch S, et al. Use of the isolated perfused kidney model to assess the acute pharmacologic effects of cyclosporin and its vehicle, cremophor EL. Transplantation 1987;44:195–201.

    Article  PubMed  CAS  Google Scholar 

  14. Kone BC, Racusen LC, Whelton A, Sole K. Acute renal failure produced by combining cyclosporine and brief renal ischemia in the Munic-Wistar rat. Clin Nephrol 1986;25 (Suppl 1):S171-S173.

    PubMed  CAS  Google Scholar 

  15. Howrie DL, et al. Anaphylactic reactions associated with parenteral cyclosporin use: Possible role of cremophor E. Drug Intell Clin Pharm 1985;19:425.

    PubMed  CAS  Google Scholar 

  16. Blaauw AAM, Leunissen KML, Cheriex EC, et al. Disappearance of pulmonary capillary leak syndrome when intravenous cyclosporine is replaced by oral cyclosporine. Transplantation 1987;43:758–759.

    Article  PubMed  CAS  Google Scholar 

  17. Krebs HA, Hanseleit K. Untersuchungen uber die Harnstoffbildung im Tierkorper. Hoppe-Seyler's Zeits Physiol Chemie 1932;210:33–66.

    CAS  Google Scholar 

  18. Langendorf O. Untersuchungen am uberlebender Saugertierherzen. Pfluger's Archiv 1935;61:291–332.

    Article  Google Scholar 

  19. Stiller CR, Keown PA. Cyclosporin therapy in perspective. In: Morris PJ, Tilney NL, eds. Progress in transplantation, Vol. 1. New York: Churchill Livingston, 1984:11–45.

    Google Scholar 

  20. Bassenge E, Busse R. Endothelial modulation of coronary tone. Prog Cardiovasc Dis 1988;30:349–480.

    Article  PubMed  CAS  Google Scholar 

  21. Mankad PS, Chester AH, Yacoub MH. 5-Hydroxytryptamine mediates endothelial dependent coronary vasodilation in the isolated rat heart by the release of nitric oxide. Cardiovasc Res 1990;25:244–248.

    Article  Google Scholar 

  22. Saldanha C, Hearse DJ. Coronary vascular responsiveness to 5-hydroxytryptamine before and after infusion of hyperkalemic crystalloid cardioplegic solution in the rat heart. Possible evidence of endothelial damage. J Thorac Cardiovasc Surg 1989;98:783–787.

    PubMed  CAS  Google Scholar 

  23. Lamping KG, Marcus ML, Dole WP. Removal of the endothelium potentiates canine large coronary artery constrictor responses to 5-hydroxytryptamine in vivo. Circ Res 1985;57:46–54.

    PubMed  CAS  Google Scholar 

  24. Luscher TF. Endothelial vasoactive subtances and cardiovascular disease. Basel: S. Karger, 1988:1–130.

    Google Scholar 

  25. Radomski MW, Palmer RMJ, Moncada S. The antiaggregatory properties of vascular endothelium: Interaction between prostacyclin and nitric oxide. Br J Pharmacol 1987;92:639–646.

    PubMed  CAS  Google Scholar 

  26. Lau DCW, Wong KL, Hwang WS. Cyclosporine toxicity on cultured rat microvascular endothelial cells. Kidney Int 1989;35:604–613.

    PubMed  CAS  Google Scholar 

  27. Kushwaha S, Bustami M, Crossman D, et al. Preserved endothelial dependent response to intracoronary substance P in cardiac transplant recipients. J Am Coll Cardiol, in press.

  28. O'Neil GS, Chester AH, Rose M, et al. The effect of cyclosporin A on the release of endothelium derived relaxing factor from isolated human epicardial coronary arteries. Transplantation 1991;51:736–738.

    Article  PubMed  Google Scholar 

  29. Rubanyi GM, Vanhoutte PM. Nature of endothelium-derived relaxing factor: Are there two relaxing mediators? Circ Res 1987;61(Suppl II):61–67.

    Google Scholar 

  30. Griffith TM, Lewis MJ, Newby AC, Henderson AH. Endothelium-derived relaxing factor. J Am Coll Cardiol 1988;12:797–806.

    Article  PubMed  CAS  Google Scholar 

  31. Mihatsch MJ, Thiel G, Oberholzer M, et al. Morphological findings in kidney transplants after treatment with cyclosporin. Transplant Proc 1983;15(Suppl 1):2821–2836.

    Google Scholar 

  32. Rego A, Vargas R, Wroblewska B, et al. Attenuation of vascular relaxation and cyclic GMP responses by cyclosporin A. J Pharmacol Exp Ther 1990;252:165–170.

    PubMed  CAS  Google Scholar 

  33. McKenzie N, Divineni R, Venzina W, et al. The effect of cyclosporine on organ blood flow. Transplant Proc 1985;17:1973–1975.

    PubMed  CAS  Google Scholar 

  34. Lorenz W, Schmal A, Schult H, et al. Histamine release and hypotensive reactions in dogs by solubilizing agents and fatty acids: Analysis of various components in Cremophor EL and development of a compound with reduced toxicity. Agents Actions 1982;12:64–80.

    Article  PubMed  CAS  Google Scholar 

  35. Murray BM, Paller MS, Ferris TF. Effect of cyclosporin administration on renal hemodynamics in conscious rats. Kidney Int 1985;28:767–774.

    PubMed  CAS  Google Scholar 

  36. Whitting PH, Thomson AW, Simpson JG. Cyclosporine: Toxicity, metabolism, and drug interactions—implications from animal studies. Transplant Proc 1985;17(Suppl 1):134–144.

    Google Scholar 

  37. Rossi NF, Churchill PC, McDonald FD, Ellis VR. Mechanism of cyclosporin A-induced renal vasoconstriction in the rat. J Pharmacol Exp Ther 1989;250:896–901.

    PubMed  CAS  Google Scholar 

  38. Kawaguchi A, Goldman MH, Shapiro R, et al. Increase in urinary thromboxane B2 in rats caused by cyclosporin. Transplantation 1985;40:214–216.

    Article  PubMed  CAS  Google Scholar 

  39. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411–415.

    Article  PubMed  CAS  Google Scholar 

  40. Kon V, Sugiura M, Inagami T, et al. Role of endothelin in cyclosporin-induced glomerular dysfunction. Kidney Int 1990;37:1487–1491.

    PubMed  CAS  Google Scholar 

  41. Macris MP, Frazier OH, Van Buren CT, et al. Improved immunosuppression for heart transplant patients using intravenous doses of cyclosporin. Transplantation 1989;47:311–314.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mankad, P., Spatenka, J., Slavik, Z. et al. Acute effects of cyclosporin and cremophor EL on endothelial function and vascular smooth muscle in the isolated rat heart. Cardiovasc Drug Ther 6, 77–83 (1992). https://doi.org/10.1007/BF00050920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050920

Key Words

Navigation