Skip to main content
Log in

Sulfur emissions to the atmosphere from natural sourees

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Emissions of sulfur gases from both natural and anthropogenic sources strongly influence the chemistry of the atmosphere. To assess the relative importance of these sources we have combined the measurements of sulfur gases and fluxes during the past decade to create a global emission inventory. The inventory, which is divided into 12 latitude belts, takes into account the seasonal dependence of sulfur emissions from biogenic sources. The total emissions of sulfur gases from natural sources are approximately 0.79 Tmol S/a. These emissions are 16% of the total sulfur emissions in the Northern Hemisphere and 58% in the Southern Hemisphere. The inventory clearly shows the impact of anthropogenic sulfur emissions in the region between 35° and 50°N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackman R.G., C.S. Tocher, and J. McLachlan (1966) Occurrence of dimethyl-b-propiothetin in marine phytoplankton.J. Fish. Res. Bd. Canada,23:357–364.

    Google Scholar 

  • Adams D.F., S.O. Farwell, E. Robinson, M.R. Pack, and W.L. Bamesberger (1981) Biogenic sulfur source strengths.Environ. Sci. Technol.,15:1493–1498.

    Google Scholar 

  • Andreae M.O. (1985) Dimethylsulfide in the water column and the sediment pore waters of the Peru upwelling areas.Limnol. Oceanogr.,30:1208–1218.

    Google Scholar 

  • Andreae M.O. (1986) The ocean as a source of atmospheric sulfur compounds. In:The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Menard, ed., Reidel, Dordrect, 331–362.

    Google Scholar 

  • Andreae M.O., E.V. Browell, M. Garstang, G.L. Gregory, R.C. Harriss, G.F. Hill, D.J. Jacob, M.C. Pereira, G.W. Sachse, A.W. Setzer, P.L. Silva Dias, R.W. Talbot, A.L. Torres, and S.C. Wofsey (1988) Biomass burning emissions and associated haze layers over amazonia.J. Geophys. Res.,93:1509–1527.

    Google Scholar 

  • Andreae M.O. and T.W. Andreae (1988) The cycle of biogenic sulfur compounds over the Amazon Basin. 1. Dry season.J. Geophys. Res.,93:1487–1497.

    Google Scholar 

  • Andreae M.O., and W.R. Barnard (1984) The marine chemistry of dimethylsulfide.Mar. Chem.,14:267–279.

    Google Scholar 

  • Andreae M.O., H. Berresheim, H. Bingemer, D.L. Jacob, B.L. Lewis, S.M. Le, and R.W. Talbot (1990) The atmospherie sulfur cycle over the Amazon basin. 2. Wet season.J. Geophys. Res.,95:16,813–16,824.

    Google Scholar 

  • Andreae M.O., R.J. Charlson, F. Bruynseels, H. Storms, R.Van Grieken and W. Maenhaut (1986) Salts, silicates, and sulfates: internal mixture in marine acrosols.Science,232:1620–1623.

    Google Scholar 

  • Andreae M.O. and H. Raemdonck (1983) Dimethylsulfide in the surface ocean and the marine atmosphere: A global view.Science,221:744–747.

    Google Scholar 

  • Asher, W.E., E.C. Monahan, R. Wanninkhof, and T.S. Bates (1990) Correlation of fractional foam coverage with gas transport rates. Proceedings of the Second International Symposium on Gas Transfer, Minneapolis, MN.

  • Barnard W.R., M.O. Andreae, W.E. Watkins, H. Bingemer, and H.W. Georgii (1982) The flux of dimethylsulfide from the oceans to the atmosphere.J. Geophys. Res.,87:8787–8793.

    Google Scholar 

  • Barnard W.R., M.O. Andreae, and R.L. Iverson (1984) Dimethylsulfide andPhaeocystis pouchetti in the southeastern Bering Sea.Cont. Shelf Res.,3:103–113.

    Google Scholar 

  • Bates T.S. and J.D. Cline (1985) The role of the ocean in a regional sulfur cycle.J. Geophys. Res.,90:9168–9172.

    Google Scholar 

  • Bates T.S., J.D. Cline, R.H. Gammon, and S.R. Kelly-Hansen (1987) Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere.J. Geophys. Res.,92:2930–2938.

    Google Scholar 

  • Bates T.S., J.E. Johnson, P.K. Quinn, P.D. Goldan, W.C. Kuster, D.C. Covert, and C.J. Hahn (1990) The biogeochemical sulfur cycle in the marine boundary layer over the Northeast Pacific Ocean.J. Atmos. Chem.,10:59–81.

    Google Scholar 

  • Belviso S., B.C. Nguyen, and P. Allard (1986) Estimate of carbonyl sulfide (OCS) volcanic source strength deduced from OCS/CO2 ratios in volcanic gases.Geophys. Res. Let.,13:133–136.

    Google Scholar 

  • Berresheim H. (1987) Biogenic sulfur emissions from the subantarctic and antarctic oceans.J. Geophys. Res.,92:13,245–13,262.

    Google Scholar 

  • Berresheim H., M.O. Andreae, G.P. Ayers, R.W. Gillet, J.T. Merrill, V.J. Harris, and W.L. Chameides (1990) Airborne measurements of dimethylsulfide, sulfur dioxide, and acrosol ions over the southern ocean south of Australia.J. Atmos. Chem.,10:342–370.

    Google Scholar 

  • Bigg E.K., J.L. Gras, and C. Evans (1984) Origin of Aitken particles in remote regions of the southern hemisphere.J. Atmos. Chem. 1:203–214.

    Google Scholar 

  • Blanchard D.C. (1985) The oceanic production of atmospheric sea salt.J. Geophys. Res.,90:961–963.

    Google Scholar 

  • Blanchard D.C. and A.H. Woodcock (1957) Bubble formation and modification in the sea and its meteorological significance.Tellus,9:145–148.

    Google Scholar 

  • Blanchard D.C., A.H. Woodcock, and R.J. Cipriano (1984) The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii.Tellus,36B:118–125.

    Google Scholar 

  • Brimblecombe P. and D. Shooter (1986) Photo-oxidation of dimethylsulfide in aqueous solution.Mar. Chem.,19:343–353.

    Google Scholar 

  • Brown K.A. and J.N.B. Bell (1986) Vegetation—the missing sink in the global cycle of carbonyl sulphide (OCS).Atmos. Environ.,20:537–540.

    Google Scholar 

  • Cantoni G.L. and D.G. Anderson (1956) Enzymatic cleavage of dimethylpropiothetin byPolysiphonia lanosa.J. Biol. Chem.,222:171–177.

    Google Scholar 

  • Carroll M.A., L.E. Heidt, R.J. Cieerone and R.G. Prinn (1986) OCS, H2S, and CS2 fluxes from a salt water marsh.J. Atmos. Chem.,4:375–395.

    Google Scholar 

  • Challenger F. and M.I. Simpson (1948) Studies on biological methylation. Part XII. A precursor of dimethyl sulfide evolved byPolysiphonia fastigiata. Dimethyl-2-carboxyethyl sulphonium hydroxide and its salts.J. Chem. Soc.,1948:1591–1597.

    Google Scholar 

  • Charlson, R.J., J. Langner, and H. Rodhe (1990) Perturbations of the northern hemisphere radiative balance by backscattering of anthropogenic sulfate acrosols.Tellus, in press.

  • Charlson R.J., J.E. Lovelock, M.O. Andreae, and S.G. Warren (1987) Occanic phytoplankton, atmospheric sulfur, cloud albedo and climate: a geophysiological feedback.Nature,326:655–661.

    Google Scholar 

  • Cline J.D. and T.S. Bates (1983) Dimethylsulfide in the equatorial Pacific Ocean: A natural source of sulfur to the atmosphere.Geophys. Res. Lett.,10:949–952.

    Google Scholar 

  • Cooper D.J., W.Z.de Mello, W.J. Cooper, R.G. Zika, E.S. Saltzman, J.M. Prospero, and D.L. Savoie (1987a) Short-term variability in biogenic sulphur emissions from a FloridaSpartina alternifora marsh.Atmos. Environ.,21:7–12.

    Google Scholar 

  • Cooper, D.J. and E.S. Saltzman (1990) Ocean/atmosphere exchange of dimethylsulfide: evidence for a lower flux.Nature, in press.

  • Cooper W.J., D.J. Cooper, E.S. Saltzman, W.Z.de Mello, D.L. Savoie, R.G. Zika, and J.M. Prospero (1987b) Emissions of biogenic sulphur compounds from several wetland soils in Florida.Atmos. Environ.,21:1491–1495.

    Google Scholar 

  • Cooper, W.J. and P.A. Matrai (1989) Distribution of dimethylsulfide in the oceans: a review. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 140–151.

  • Cutter G.A. and C.F. Krahforst (1988) Sulfide in surface waters of the western Atlantic Ocean.Geophys. Res. Let.,15:1393–1396.

    Google Scholar 

  • Dacey J.W.H. and N.V. Blough (1987) Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide.Geophys. Res. Let.,14:1246–1249.

    Google Scholar 

  • Dacey J.W.H., G.M. King, and S.G. Wakeham (1987) Factors controlling emission of dimethylsulfide from salt marshes.Nature,330:643–645.

    Google Scholar 

  • Dacey J.W.H. and S.G. Wakeham (1986) Oceanic dimethylsulfide: production during zooplankton grazing on phytoplankton.Science,233:1314–1316.

    Google Scholar 

  • Delmas R. (1982) On the emissions of carbon, nitrogen, and sulfur to the atmosphere during bushfires in intertropical savannah zones.Geophys. Res. Lett.,9:761–764.

    Google Scholar 

  • Delmas R. and J. Servant (1988) The atmospheric sulfur cycle in the tropics. In:Acidification in Tropical Countries. H. Rodhe and R. Herrera, eds., John Wiley and Sons Ltd., London, 43–72.

    Google Scholar 

  • de Mello W.Z., D.J. Cooper, W.J. Cooper, E.S. Saltzman, R.G. Zika, D.L. Savoic, and J.M. Prospero (1987) Spatial and diel variability in the emissions of some biogenic sulfur compounds from a FloridaSpartina alterniflora coastal zone.Atmos. Environ.,21:987–990.

    Google Scholar 

  • Dignon J. and S. Hameed (1989) Historic emissions of sulfur and nitrogen oxides from 1860 to 1980.J. Air Poll. Con. Assoc.,39:180–186.

    Google Scholar 

  • Dignon, J. (1990) NOx and SOx emissions from fossil fuel: a global distribution.Atmos. Environ., in press.

  • Dignon, J. and J.E. Penner (1990) Biomass burning: a source of nitrogen oxides in the atmosphere. Proceedings of the Chapman Conference on Biomass Burning. In press.

  • Dyrssen D. (1989) Biogenic sulfur in two different marine environments.mar. Chem.,28:241–249.

    Google Scholar 

  • Elliott S. (1988) Linear free energy techniques for estimation of metal sulfide complexation complexes.Mar. Chem.,24:203–213.

    Google Scholar 

  • Elliott S. and F.S. Rowland (1990) The effect of metal complexation on hydrogen sulfide transport across the sea-air interface.J. Atmos. Chem.,10:315–327.

    Google Scholar 

  • Elliott S., E. Lu, and F.S. Rowland (1987) Carbonyl sulfide hydrolysis as a source of hydrogen sulfide in open ocean seawater.Geophys. Res. Let.,14:131–134.

    Google Scholar 

  • Elliott, S., E. Lu, and F.S. Rowland (1989) The hydrogen sulfides in oxic seawater. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 314–330.

  • Erickson III, D.J., J.J. Walton, S.J. Ghan, and J.E. Penner (1990) Three-dimensional modelling of the global atmospheric sulfur cycle: a first step.Atmos. Environ., in press.

  • Eriksson E. (1963) The yearly circulation of sulfur in nature.J. Geophys. Res.,68:4001–4008.

    Google Scholar 

  • Fall R., D.L. Albritton, R.C. Fehsenfeld, W.C. Kuster, and P.D. Goldan (1988) Laboratory studies of some environmental variables controlling sulfur emissions from plants.J. Atmos. Chem.,6:341–362.

    Google Scholar 

  • Ferek R.J. and M.O. Andreae (1983) The supersaturation of carbonyl sulfide in surface waters of the Pacific Ocean off Peru.Geophys. Res. Let.,10:393–396.

    Google Scholar 

  • Ferek R.J. and M.O. Andreae (1984) Photochemical production of carbonyl sulphide in marine surface waters.Nature,307:148–150.

    Google Scholar 

  • Filner P., H. Rennenberg, J. Sekiya, R.A. Bressan, L.G. Wilson, L.Le Cureux, and T. Shimei (1984) Biosynthesis and emission of hydrogen sulfide by higher plants. In:Gaseous Air Pollutants and Plant Metabolism, M.J. Koziol and F.R. Whatley, eds., Butterworths, London, 291–312.

    Google Scholar 

  • Friend J.P. (1973) The global sulfur cycle. In:Chemistry of the Lower Atmosphere, S.I. Rasool, ed., Plenum Press, New York, NY, 177–201.

    Google Scholar 

  • Galloway J.N. (1985) The ceposition of sulfur and nitrogen from the remote atmosphere. In:The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, J.N. Galloway, R.J. Charlson, M.O. Andreae, and H. Rodhe, eds., Reidel, Dordrecht, 143–176.

    Google Scholar 

  • Goldan P.D., R. Fall, W.C. Kuster, and F.C. Fehsenfeld (1988) Uptake of OCS by growing vegetation: a major tropospheric sink.J. Geophys. Res.,93:14,186–14,192.

    Google Scholar 

  • Goldan P.D., W.C. Kuster, D.L. Albritton, and F.C. Fehsenfeld (1987) The measurement of natural sulfur emissions from soils and vegetation: three sites in the eastern United States revisited.J. Atmos. Chem.,5:439–467.

    Google Scholar 

  • Granat, L., H. Rodhe, and R.U. Hallberg (1976) The global sulfur cycle. In:Nitrogen, Phosphorus and Sulfur-Global Cycles, B.H. Svensson and R. Soderlund, eds., Ecol. Bull. Stockholm, 22, 89–134.

  • Green R. (1962) Biosynthesis of dimethyl-b-propiothetin.J. Biol. Chem.,237:2251–2254.

    Google Scholar 

  • Guenther, A.B., B.K. Lamb, and H.H. Westberg (1989) U.S. National biogenic sulfur emissions inventory. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 14–30.

  • Hameed S. and J. Dignon (1988) Changes in the geographical distributions of global emissions of NOx and SOx from fossil-fuel combustion between 1966 and 1980.Atmos. Environ.,22:441–449.

    Google Scholar 

  • Hameed, S. and J. Dignon (1990) Global emissions of nitrogen and sulfur oxides in fossil fuel combustion: 1970–1986.J. Air Poll. Con. Assoc., in press.

  • Hao, W.M., M.H. Liu, and P.J. Crutzen (1989) Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, bases on FAO statistics for the period 1975–1980. Presented at the Third International Symposium on Fire Ecology, Freiburg, FDR, May 16–20.

  • Hass P. (1935) The liberation of methyl sulphide by sea-weed.Biochem. J.,29:1297–1299.

    Google Scholar 

  • Hegg D.A., L.F. Radke, R.V. Hobbs, C.A. Brock, and R.J. Riggan (1987) Nitrogen and sulfur emissions from the burning of forest products near large urban areas.J. Geophys. Res.,92:14,701–14,709.

    Google Scholar 

  • Henderson-Sellers A., M.F. Wilson, G. Thomas, R.E. Diekinson (1986) Current Global Land-Surface Data Sets for Use in Climate-Related Studies, NCAR/TN-272+STR, Atmospheric Analysis and Prediction Division, National Center for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Hileman, B. (1990) Biomass burning: Environment hurt more than thought. Chemical and Engineering News, March 26, 4–5.

    Google Scholar 

  • Hines M.E. and M.C. Morrison (1989) Emissions of biogenic sulfur compounds from Alskan tundra.Eos,70:284.

    Google Scholar 

  • Hobbs P.V. (1971) Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean.Quart. J. R. Met. Soc.,97:263–271.

    Google Scholar 

  • Hofmann D.J. (1990) Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years.Science,248:996–1000.

    Google Scholar 

  • Holmen K., and P. Liss (1984) Models for air-water gas transfer: an experimental investigation.Tellus,36B:92–100.

    Google Scholar 

  • Iverson R.L., F.L. Nearhoof, and M.O. Andreae (1989) Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters.Limnol. Oceanogr.,34:53–67.

    Google Scholar 

  • Johnson J.E. and B. Harrison (1986) Carbonyl sulfide concentrations in the surface waters and above the Pacific Ocean.J. Geophys. Res.,91:7883–7888.

    Google Scholar 

  • Jorgensen B.B. and B. Okholm-Hansen (1985) Emissions of biogenic sulfur gases from a Danish estuary.Atmos. Environ.,19:1737–1749.

    Google Scholar 

  • Keller, M.D., W.K. Bellows, and R.R.L. Guillard (1989) Dimethylsulfide production in marine phytoplankton. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 167–182.

  • Khalil M.A.K. and R.A. Rasmussen (1984) Global sources, lifetimes, and mass balances of carbonyl sulfide (OCS) and carbon disulide (CS2) in the earth's atmosphere.Atmos. Environ.,18:1805–1813.

    Google Scholar 

  • Kiene R.P. and T.S. Bates (1990) Biological removal of dimethylsulphide from sea water.Nature,345:6277–6279.

    Google Scholar 

  • Kiene R.P. and P.T. Visscher (1987) Production and rate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments.Appl. Environ. Microbiol.,53:2426–2434.

    Google Scholar 

  • Kim K.H. and M.O. Andreae (1987) Carbon disulfide in seawater and the marine atmosphere over the north Atlantic.J. Geophys. Res.,92:14,733–14,738.

    Google Scholar 

  • Lacey C.J., J. Walker, and I.R. Noble (1982) Fire in Australian tropical savannas. In:Ecology of Tropical Savannas, B.J. Huntley and B.H. Walker, eds., Ecological Studies 42, Springer Verlag, New York.

    Google Scholar 

  • Lamb B.K., H. Westberg, G. Allwine, L. Bamesberger, and G. Guenther (1987) Measurement of biogenic sulfur emissions from soils and vegetation: application of dynamic enclosure methods with Natusch Filter and GC/FPD analysis.J. Atmos. Chem.,5:469–491.

    Google Scholar 

  • Leck C., U. Larsson, L.E. Bagander, S. Johansson, and S. Hajdu (1990) Dimethylsulfide in the Baltic Sea: Annual variability in relation to biological activity.J. Geophys. Res.,95:3353–3364.

    Google Scholar 

  • Leck, C. and H. Rodhe (1990) Emissions of marine biogenic sulfur to the atmosphere of northern Europe.J. Atmos. Chem., in press.

  • Ledwell J.R. (1984) The variation of the gas transfer coefficient with molecular diffusivity, In:Gas Transfer at Water Surfaces, W. Brutsaert and G.H. Jirka, eds., Reidel, Hingham, MA, 293–302.

    Google Scholar 

  • Levitus S. (1982) Climatological Atlas of the World Ocean, NOAA Professional Paper 13, DOC/NOAA, U.S. Government Printing Office, Washington DC 20402, 173 pp.

    Google Scholar 

  • Liss P.S. (1973) Processes of gas exchange across an air-water interface.Deep Sea Res.,20:221–238.

    Google Scholar 

  • Liss P.S. and L. Merlivat (1986) Air-sea gas exehange rates: introduction and synthesis. In:The Role of Air-Sea Exchange in Geochemical Cycling, P. Buat-Menard, ed., Reidel, Hinghan, MA, 113–127.

    Google Scholar 

  • Logan, J.A., J. Dignon, and E. Gottlieb (1990) Biomass burning in the global budget of CO: A study using a chemical tracer model. Proceedings of the Chapman Conference on Biomass Burning, in press.

  • Lovelock J.E. (1974) CS2 and the natural sulfur cycle.Nature,248:625–626.

    Google Scholar 

  • Lovelock J.E., R.J. Maggs, and R.A. Rasmussen (1972) Atmospheric dimethylsulfide and the natural sulfur cycle.Nature,237:452–453.

    Google Scholar 

  • MacTaggart D., D. Adams, and S. Farwell (1987) Measurement of biogenic sulfur emissions from soils and vegetation using dynamic enclosure methods: Total sulfur gas fluxes via MFC/FD/FPD determinations.J. Atmos. Chem.,5:417–437.

    Google Scholar 

  • Malinconico L.L.Jr. (1987) On the variations of SO2 emission from volcanos.J. Volcanol. Geotherm. Res.,33:231–237.

    Google Scholar 

  • Matthews E. (1982) Global vegetation and land use: new high resolution data bases for climate studies.J. Clim. Applied Meteor.,22:474–487.

    Google Scholar 

  • Matrai P.A. (1989) Determination of sulfur in ocean particulates by combustion fluorescence.Mar. Chem.,26:227–238.

    Google Scholar 

  • McClelland L., T. Simkin, M. Summers, E. Nielson, T.C. Stein (1989) Global Volcanism 1975–1985, American Geophysical Union, Washington, DC.

    Google Scholar 

  • Mellilo J.M. and P.A. Steudler (1989) The effect of nitrogen fertilizer on the OCS and CS2 emissions from temperate forest soils.J. Atmos. Chem.,9:411–417.

    Google Scholar 

  • Mihalopoulos N., B. Bonsang, B.C. Nguyen, M. Kanakidou and S. Belviso (1989) Field observations of carbonyl sulfide deficit near the ground: possible implications of vegetation.Atmos. Environ.,23:2159–2166.

    Google Scholar 

  • Nguyen B.C., S. Belviso, N. Mihalopoulos, J. Gostan and P. Nival (1988) Dimethylsulfide production during natural phytoplanktonic blooms.Mar. Chem.,24:133–141.

    Google Scholar 

  • Nguyen B.C., B. Bonsang, and A. Gaudry (1983) The role of the ocean in the global atmospheric sulfur cycle.J. Geophys. Res.,88:10,903–10,914.

    Google Scholar 

  • Nriagu J.O. and D.A. Holdway (1989) Production and release of dimethylsulfide from the Great Lakes.Tellus,41B:161–169.

    Google Scholar 

  • Patterson E.M., C.S. King, A.C. Delany, A.F. Warburg, A.C.D. Leslie, and B.J. Huebert (1980) Global measurements of aerosols in remote continental and marine regions: concentrations, size distributions, and optical properties.J. Geophys. Res.,85:7361–7376.

    Google Scholar 

  • Penner J.E. (1990) Cloud albedo, greenhouse effects, atmospheric chemistry and climate change.J. Air Waste Manage. Assoc.,40:461–465.

    Google Scholar 

  • Pinto J.P., R.P. Turco, and O.B. Toon (1989) Self-limiting physical and chemical effects in volcanic eruption clouds.J. Geophys. Res.,94:11,165–11,174.

    Google Scholar 

  • Rasmussen R.A., M.A.K. Khalil, and S.D. Hoyt (1982) The oceanic source of carbonylsulfide (OCS),Atmos. Environ.,16:1591–1594.

    Google Scholar 

  • Reed R.H. (1983) Measurement and osmotic significance of b-dimethyl-sulphoniopropionate in marine macroalgae.Mar. Biol. Let.,4:173–181.

    Google Scholar 

  • Rennenberg H. (1984) The fate of excess sulfur in higher plants.Ann. Rev. Plant Physiol. 35:121–153.

    Google Scholar 

  • Robinson J.M. (1989) On uncertainty in the computation of global emissions from biomass burning.Climatic Change,14:243–262.

    Google Scholar 

  • Saltzman E.S. and D.J. Cooper (1988) Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the caribbean and Gulf of Mexico.J. Atmos. Chem.,7:191–209.

    Google Scholar 

  • Saltzman E.S., K. Holmen, and D.J. Cooper (1988) Measurement of the piston velocity of dimethylsulfide: Implications for its air-sea exchange.Eos,69:1073.

    Google Scholar 

  • Savoie D.L., J.M. Prospero, and E.S. Saltzman (1989) Non-sea-salt and nitrate in trade wind aerosols at Barbados: evidence for long-range transport.J. Geophys. Res.,94:5,069–5,080.

    Google Scholar 

  • Savoie D.L. and J.M. Prospero (1989) Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean.Nature,339:685–687.

    Google Scholar 

  • Seiler W. and P.J. Crutzen (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning.Climatic Change,2:207–247.

    Google Scholar 

  • Shea D.J. (1986) Climatological Atlas: 1950–1979, NCAR/TN-269+STR, Atmospheric Analysis and Prediction Division, National Center for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Simkin T. and L. Siebert (1984) Explosive eruptions in space and time: durations, intervals and a comparison of the world's active volcanic belts. In:Explosive Volcanism: Inception, Evolution, and Hazards, Studies in Geophysics, National Academy Press, Washington, DC, 110–121.

    Google Scholar 

  • Simkin T., L. Siebert, L. McClelland, D. Bridge, C. Newhall, and J.H. Latter (1981)Volcanoes of the World. Hutchinson Ross, Stroudsburg, PA.

    Google Scholar 

  • Smethic W.M.Jr., T. Takahashi, D.W. Chipman and J.R. Ledwell (1985) Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from222Rn and pCO2 measurements.J. Geophys. Res.,90:7005–7022.

    Google Scholar 

  • Sorensen J. (1988) Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary.Biogeochem.,6:201–210.

    Google Scholar 

  • Staubes R., H.W. Georgii, and G. Ockelmann (1989) Flux of OCS, DMS, and CS2 from various soils in Germany.Tellus,41B:305–313.

    Google Scholar 

  • Steudler P.A., and B.J. Peterson (1985) Annual cycle of gaseous sulfur emissions from a New EnglandSpartina alterniflora marsh.Atmos. Environ.,19:1411–1416.

    Google Scholar 

  • Stoiber R.E., S.N. Williams, and B. Huebert (1987) Annual contribution of sulfur dioxide to the atmosphere by volcanos.J. Volcanol. Geotherm. Res.,33:1–8.

    Google Scholar 

  • Summers P.W. and W. Fricke (1989) Atmospheric decay distances and times for sulphur and nitrogen oxides estimated from air and precipitation monitoring in eastern Canada.Tellus,41B:286–295.

    Google Scholar 

  • Suylen G.M.H., G.C. Steless, and J.G. Kuenen (1986) Chemolithotrophic potential of a hyphomicrobium species capable of growth on methylated sulphur compounds.Arch. Microbiol. 146:192–198.

    Google Scholar 

  • Tauber H. (1949)The Chemistry and Technology of Enzymes. Wiley, New York.

    Google Scholar 

  • Taylor, B.F., and R.P. Kiene (1989) Microbial metabolism of dimethyl-sulfide. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 202–221.

  • Turner S.M. and P.S. Liss (1985) Measurements of various sulphur gases in a coastal marine environment.J. Atmos. Chem.,2:223–232.

    Google Scholar 

  • Turner, S.M., G. Malin, and P.S. Liss (1989) Dimethylsulfide and (dimethylsulfonio)propionate in European coastal and shelf waters. In:Biogenic Sulfur in the Environment, E.S. Saltzman and W.J. Cooper, eds., American Chemical Society Symposium Series No. 393, Washington, DC, 183–201.

  • Turner S.M., G. Malin, P.S. Liss, D.S. Harbour, and P.M. Holligan (1988) The seasonal variation of dimethyl sulfide and dimethyl-sulfoniopropionate concentrations in nearshore waters.Limnol. Oceanogr.,33:364–375.

    Google Scholar 

  • Vairavamurthy A., M.O. Andreae, and R.L. Iverson (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin byHymenomonas carterae in relation to sulfur source and salinity variations.Limnol. Oceanogr.,30:59–70.

    Google Scholar 

  • Varhelyi G. (1985) Continental and global sulfur budgets-I. Anthropogenic SO2 emissions.Atmos. Environ.,19:1029–1040.

    Google Scholar 

  • Varhelyi G. and G. Gravenhorst (1983) Production rate of airborne sea-salt sulfur deduced from chemical analysis of marine aerosols and precipitation.J. Geophys. Res.,88:6737–6751.

    Google Scholar 

  • Wilson M.F. and A. Henderson-Sellers (1985) A global archive of land cover and soils data for use in general circulation climate models.J. Clim.,5:119–143.

    Google Scholar 

  • Zinder S.H., W.N. Doemel and T.D. Brock (1977) Production of volatile sulfur compounds during the decomposition of algal mats.App. Environ. Microbiol.,34:859–860.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, T.S., Lamb, B.K., Guenther, A. et al. Sulfur emissions to the atmosphere from natural sourees. J Atmos Chem 14, 315–337 (1992). https://doi.org/10.1007/BF00115242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115242

Keywords

Navigation