Skip to main content
Log in

Footprint estimation for scalar flux measurements in the atmospheric surface layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The flux footprint is the contribution, per unit emission, of each element of a surface area source to the vertical scalar flux measured at height z m ; it is equal to the vertical flux from a unit surface point source. The dependence of the flux footprint on crosswind location is shown to be identical to the crosswind concentration distribution for a unit surface point source; an analytic dispersion model is used to estimate the crosswind-integrated flux footprint. Based on the analytic dispersion model, a normalized crosswind-integrated footprint is proposed that principally depends on the single variable z/z m , where z is a measure of vertical dispersion from a surface source. The explicit dependence of the crosswind-integrated flux footprint on downwind distance, thermal stability and surface roughness is contained in the dependence of z on these variables. By also calculating the flux footprint with a Lagrangian stochastic dispersion model, it is shown that the normalized flux footprint is insensitive to the analytic model assumption of a self-similar vertical concentration profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Calder: 1952, ‘Some Recent British Work on the Problem of Diffusion in the Lower Atmosphere’, Proc. U.S. Tech. Conf. Air Poll., McGraw-Hill, New York, pp. 787–792.

    Google Scholar 

  • Chatwin, P. C.: 1968, ‘The Dispersion of a Puff of Passive Substance in the Constant Stress Region’, Quart. J. Roy. Meteorol. Soc. 94, 401–411.

    Google Scholar 

  • Chaudhry, F. H. and Meroney, R. N.: 1973, ‘Similarity Theory of Diffusion and the Observed Vertical Spread in the Diabatic Surface Layer’, Boundary-Layer Meteorol. 3, 405–415.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Elliot, W. P.: 1961, ‘The Vertical Diffusion of Gas from a Continuous Source’, Int. J. Air Water Pollut. 4, 33–46.

    Google Scholar 

  • Gash, J. H. C.: 1986, ‘A Note on Estimating the Effect of a Limited Fetch on Micrometeorological Evaporation Measurements’, Boundary-Layer Meteorol. 35, 409–413.

    Google Scholar 

  • Gryning, S. E., van Ulden, A. P., and Larsen, S.: 1983, ‘Dispersion from a Ground Level Source Investigated by a K Model’, Quart. J. Roy. Meteorol. Soc. 109, 355–364.

    Google Scholar 

  • Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-evaluation’, Boundary-Layer Meteorol. 42, 55–78.

    Google Scholar 

  • Horst, T. W.: 1979, ‘Lagrangian Similarity Modeling of Vertical Diffusion from a Ground-Level Source’, J. Appl. Meteorol. 18, 733–740.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1988, ‘Eddy Structure in the Convective Boundary Layer — New Measurements and New Concepts’, Quart. J. Roy. Meteorol. Soc., 114, 827–858.

    Google Scholar 

  • Leclerc, M. Y. and Thurtell, G. W.: 1990, ‘Footprint Predictions of Scalar Fluxes Using a Markovian Analysis’, Boundary-Layer Meteorol. 52, 247–258.

    Google Scholar 

  • Nieuwstadt, F. T. M. and van Ulden, A. P.: 1978, ‘A Numerical Study on the Vertical Dispersion of Passive Contaminants from a Continuous Source in the Atmospheric Surface Layer’, Atmos. Environ. 12, 2119–2124.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley & Sons, 397 pp.

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’, Boundary-Layer Meteorol. 11, 355–361.

    Google Scholar 

  • Pasquill, F.: 1972, ‘Some Aspects of Boundary Layer Description’, Quart. J. Roy. Meteorol. Soc. 98, 469–494.

    Google Scholar 

  • Pasquill, F. and Smith, F. B.: 1983, Atmospheric Diffusion, 3rd ed., John Wiley & Sons, 437pp.

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Appl. Meteorol. 9, 857–861.

    Google Scholar 

  • Sawford, B. L. and Guest, F. M.: 1987, ‘Lagrangian Stochastic Analysis of Flux-Gradient Relationships in the Convective Boundary Layer’, J. Atmos. Sci. 44, 1152–1165.

    Google Scholar 

  • Schmid, H. P. and Oke, T. R.: 1990, ‘A Model to Estimate the Source Area Contributing to Turbulent Exchange in the Surface Layer over Patchy Terrain’, Quart. J. Roy. Meteorol. Soc. 116, 965–988.

    Google Scholar 

  • Schmid, H. P., Cleugh, H. A., Grimmond, C. S. B., and Oke, T. R.: 1991, ‘Spatial Variability of Energy Fluxes in Suburban Terrain’, Boundary-Layer Meteorol. 54, 249–276.

    Google Scholar 

  • Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., and Desjardins, R. L.: 1990, ‘Footprint Prediction of Scalar Fluxes from Analytical Solutions of the Diffusion Equation’, Boundary-Layer Meteorol. 50, 355–373.

    Google Scholar 

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech. 180, 529–556.

    Google Scholar 

  • van Ulden, A. P.: 1978, ‘Simple Estimates for Vertical Diffusion from Sources near the Ground’, Atmos. Environ. 12, 2125–2129.

    Google Scholar 

  • Weil, J. C.: 1990, ‘A Diagnosis of the Asymmetry in Top-Down and Bottom-Up Diffusion Using a Lagrangian Stochastic Model’, J. Atmos. Sci. 47, 501–515.

    Google Scholar 

  • Wyngaard, J. C.: 1988, ‘Structure of the PBL’;. In A. Venkatram and J. C. Wyngaard (eds.), Lectures on Air Pollution Modeling, Amer. Meteorol. Soc., Boston, pp. 9–61.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The National Center for Atmospheric Research is funded by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horst, T.W., Weil, J.C. Footprint estimation for scalar flux measurements in the atmospheric surface layer. Boundary-Layer Meteorol 59, 279–296 (1992). https://doi.org/10.1007/BF00119817

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119817

Keywords

Navigation