Skip to main content
Log in

Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider plankton-nutrient interaction models consisting of phytoplankton, herbivorous zooplankton and dissolved limiting nutrient with general nutrient uptake functions and instantaneous nutrient recycling. For the model with constant nutrient input and different constant washout rates, conditions for boundedness of the solutions, existence and stability of non-negative equilibria, as well as persistence are given. We also consider the zooplankton-phytoplankton-nutrient interaction models with a fluctuating nutrient input and with a periodic washout rate, respectively. It is shown that coexistence of the zooplankton and phytoplankton may arise due to positive bifurcating periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, E. M.: Aspects of a zooplankton, phytoplankton and phosphorus system. Ecol. Model. 5, 293–300 (1978)

    Google Scholar 

  2. Arnold, E. M.: On stability and periodicity in phosphorus nutrient dynamics. Q. Appl. Math. 38, 139–141 (1980)

    Google Scholar 

  3. Arnold, E. M., Voss, D. A.: Numerical behavior of a zooplankton, phytoplankton and phosphorus system. Ecol. Model. 13, 183–193 (1981)

    Google Scholar 

  4. Beretta, E., Bischi, B. I., Solimano, F.: Stability in chemostat equations with delayed nutrient recycling. J. Math. Biol. 28, 99–111 (1990)

    Google Scholar 

  5. Busenberg, S., Kumar, S. K., Austin, P., Wake, G.: The dynamics of a model of a plankton-nutrient interaction. Bull. Math. Biol. 52, 677–696 (1990)

    Google Scholar 

  6. Butler, G. J., Freedman, H. I.: Periodic solutions of a predator-prey system with periodic coefficients. Math. Biosci. 55, 27–38 (1981)

    Google Scholar 

  7. Butler, G. J., Freedman, H. I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Sec. 96, 425–430 (1986)

    Google Scholar 

  8. Butler, G. J., Hsu, S. B., Waltman, P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45, 435–449 (1985)

    Google Scholar 

  9. Butler, G. J., Waltman, P.: Persistence in dynamical systems. J. Differ. Equations 63, 255–262 (1986)

    Google Scholar 

  10. Butler, G. J., Wolkowicz, G. S. K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)

    Google Scholar 

  11. Caperon, J.: Population growth response of Isochrysis galbana to nitrate variation at limiting concentration. Ecology 49, 866–872 (1968)

    Google Scholar 

  12. Cushing, J. M.: Periodic time-dependent predator prey systems. SIAM J. Appl. Math. 23, 972–979 (1977)

    Google Scholar 

  13. Cushing, J. M.: Integrodifferential Equations and Delay Models in Population Dynamics. Berlin Heidelberg New York: Springer 1977

    Google Scholar 

  14. Cushing, J. M.: Periodic Kolmogorov systems. SIAM J. Math. Anal. 13, 811–827 (1982)

    Google Scholar 

  15. Cushing, J. M.: Periodic two-predator, one-prey interactions and the time sharing of a resource niche. SIAM J. Appl. Math. 44, 392–410 (1984)

    Google Scholar 

  16. DeAngelis, D. I., Bartell, S. M., Brenkert, A. L.: Effects of nutrient recycling and food-chain length on resilience. Am. Nat. 134, 778–805 (1989)

    Google Scholar 

  17. Evans, G. T., Parslow, J. S.: A model of annual plankton cycles. Biol. Oceanogr. 3, 327–427 (1985)

    Google Scholar 

  18. Fasham, M. J. R., Ducklow, H. W., McKelvie, S. M.: A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591–639 (1990)

    Google Scholar 

  19. Freedman, H. I.: Deterministic Mathematical Models in Population Ecology. Edmonton: HIFR Consulting Ltd. 1987

    Google Scholar 

  20. Freedman, H. I., Ruan, S.: Hopf bifurcation in three-species food chain models with group defence. Math. Biosci. 111, 73–87 (1992).

    Google Scholar 

  21. Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)

    Google Scholar 

  22. Freedman, H. I., Xu, Y.: Models of competition in the chemostat with instantaneous and delayed nutrient recycling. J. Mah. Biol. (to appear)

  23. Gard, T. C.: Persistence in food chains with general interactions. Math. Biosci. 51, 165–174 (1980)

    Google Scholar 

  24. Gard, T. C.: Mathematical analysis of some resource-prey-predator models: application to a NPZ microcosm model. In: Freedman, H. I., Strobeck, C. (eds.) Population Biology, pp. 274–282. Berlin Heidelberg New York: Springer 1983

    Google Scholar 

  25. Gard, T. C., Hallam, T. G.: Persistence in food webs: I. Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    Google Scholar 

  26. Hale, J. K., Somolinos, A. S.: Competition for fluctuating nutrient. J. Math. Biol. 18, 255–280 (1983)

    Google Scholar 

  27. Hallam, T. G.: On persistence of acquatic ecosystems. In: Anderson, N. R., Zahurance, B. G. (eds.) Oceanic Sound Scattering Predication, pp. 749–765. New York: Plenum 1977

    Google Scholar 

  28. Hallam, T. G.: Controlled persistence in rudimentary plankton models. In: Avula, J. R. (ed.) Mathematical Modelling, vol. 4, pp. 2081–2088. Rolla: University of Missouri Press 1977

    Google Scholar 

  29. Hallam, T. G.: Structural sensitivity of grazing formulation in nutrient controlled plankton models. J. Math. Biol. 5, 261–280 (1978)

    Google Scholar 

  30. Harrison, G. W.: Global stability of predator-prey interactions. J. Math. Biol. 8, 159–171 (1979)

    Google Scholar 

  31. Hsu, S. B.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9, 115–132 (1980)

    Google Scholar 

  32. Ivlev, V. S.: Experimental Ecology of the Feeding of Fishes. New Haven: Yale University Press 1961

    Google Scholar 

  33. Keener, J. P.: Oscillatory coexistence in the chemostat: a codimension two unfolding. SIAM J. Appl. Math. 43, 1005–1018 (1983)

    Google Scholar 

  34. LaSalle, J., Lefschetz, S.: Stability by Liapunov's Direct Method. New York: Academic Press 1961

    Google Scholar 

  35. de Mottoni, P., Schiaffino, A.: Competition systems with periodic coefficients. A geometric approach. J. Math. Biol. 11, 319–335 (1981)

    Google Scholar 

  36. Nisbet, R. M., McKinstry, J., Gurney, W. S. C.: A “stratagic” model of material cycling in a closed ecosystem. Math. Biosci. 64, 99–113 (1983)

    Google Scholar 

  37. Powell, T., Richerson, P. J.: Temporal variation, spatial heterogeneity and competition for resource in plankton system: a theoretical model. Am. Nat. 125, 431–464 (1985)

    Google Scholar 

  38. Rabinowitz, P.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Google Scholar 

  39. Riley, G. A., Stommel, H., Burrpus, D. P.: Qualitative ecology of the plankton of the Western North Atlantic. Bull. Bingham Oceanogr. Collect. 12, 1–169 (1949)

    Google Scholar 

  40. Ruan, S., Freedman, H. I.: Persistence in three-species food chain models with group defence. Math. Biosci. 107, 111–125 (1991)

    Google Scholar 

  41. Sansone, G., Conti, R.: Nonlinear Differential Equations. New York: Pergamon 1964

    Google Scholar 

  42. Smith, H. L.: Competitive coexistence in an oscillating chemostat. SIAM J. Appl. Math. 40, 498–522 (1981)

    Google Scholar 

  43. Steele, J. H.: Structure of Marine Ecosystems. Oxford: Blackwell Scientifics 1974

    Google Scholar 

  44. Taylor, A. J.: Characteristic properties of model for the vertical distributions of phytoplankton under stratification. Ecol. Model. 40, 175–199 (1988)

    Google Scholar 

  45. Walsh, J. J.: Death in the sea: Enigmatic phytoplankton losses. Prog. Oceanogr. 12, 1–86 (1983)

    Google Scholar 

  46. Waltman, P.: Competition Models in Population Biology. Philadelphia: SIAM 1983

    Google Scholar 

  47. Waltman, P.: Coexistence in chemostat-like models. Rocky Mt. J. Math. 20, 777–807 (1990)

    Google Scholar 

  48. Wolkowicz, G. S. K., Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and different death rates. SIAM J. Appl. Math. 52, 222–233 (1992)

    Google Scholar 

  49. Wroblewski, J. S.: Vertical migrating herbivorous plankton — their possible role in the creation of small scale phytoplankton patchiness in the ocean. In: Anderson, N. R., Zahurance, B. G. (eds.) Oceanic Sound Scattering Predication, pp. 817–845. New York: Plenum 1977

    Google Scholar 

  50. Wroblewski, J. S., Sarmiento, J. L., Flierl, G. R.: An ocean basin scale model of plankton dynamics in the North Atlantic, 1. Solutions for the climatological oceanographic condition in May. Global Biogeochem. Cycles 2, 199–218 (1988)

    Google Scholar 

  51. Yang, F., Freedman, H. I.: Competing predators for a prey in a chemostat model with periodic nutrient input. J. Math. Biol. 29, 715–732 (1991)

    Google Scholar 

  52. Yoshizawa, T.: Stability Theory by Liapunov's Second Method. Tokyo: The Mathematical Society of Japan 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research has been supported in part by a University of Alberta Ph.D. Scholarship and is in part based on the author's Ph.D. thesis under the supervision of Professor H. 1. Freedman, to whom the author owes a debt of appreciation and gratitude for his kind advice, helpful comments and continuous encouragement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, S. Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling. J. Math. Biol. 31, 633–654 (1993). https://doi.org/10.1007/BF00161202

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161202

Key words

Navigation