Skip to main content
Log in

Patterns in the effects of infectious diseases on population growth

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

An infectious disease may reduce or even stop the exponential growth of a population. We consider two very simple models for microparasitic and macroparasitic diseases, respectively, and study how the effect depends on a contact parameter K. The results are presented as bifurcation diagrams involving several threshold values of к. The precise form of the bifurcation diagram depends critically on a second parameter ζ, measuring the influence of the disease on the fertility of the hosts. A striking outcome of the analysis is that for certain ranges of parameter values bistable behaviour occurs: either the population grows exponentially or it oscillates periodically with large amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R. M., May, R. M.: Regulation and stability of host-parasite population interactions. I. Regulatory processes, J. Anim. Ecol. 47, 219–247 (1978)

    Google Scholar 

  2. Anderson, R. M., May, R. M.: Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979)

    Google Scholar 

  3. Andreasen, V.: Disease regulation of age-structured host populations. Theor. Pop. Biol. 36, 214–239 (1989)

    Google Scholar 

  4. Blythe, S. P., Castillo-Chavez C.: Like-with-like preference and sexual mixing models, Math. Biosci. 96, 221–238 (1989)

    Google Scholar 

  5. Busenberg, S., Van den Driesche P.: Analysis of a disease transmission model in a population with varying size J. Math. Biol. 28, 257–270 (1990)

    Google Scholar 

  6. Dietz, K.: Overall population patterns in the transmission cycle of infectious disease agents. In: Anderson, R. M., May R. M. (eds.) Population Biology of Infectious Diseases. (Report of Dahlem Workshop, pp. 87–102) Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  7. Dietz, K., Hadeler, K. P.: Epidemiological models for sexually transmitted diseases. J. Math. Biol. 26, 1–25 (1988)

    Google Scholar 

  8. Hadeler, K. P., Dietz, K.: Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations. Comput. Math. Appl. 9, 415–430 (1983)

    Google Scholar 

  9. Hadeler, K. P., Dietz, K.: Population dynamics of killing parasites which reproduce in the host. J. Math. Biol. 21, 45–65 (1984)

    Google Scholar 

  10. Hethcote, H. W., Stech, H. W., Van den Driesche, P.: Periodicity and stability in epidemic models: A survey. In: S. N. Busenberg, K. I. Cooke (eds.) Differential equations and applications in ecology, epidemics, and population problems, pp. 65–82. New York: Academic Press 1981

    Google Scholar 

  11. Hethcote, H. W., Stech H. W., Van den Driesche, P.: Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40, 1–9 (1981)

    Google Scholar 

  12. Jin Cheng-Fu: personal communication

  13. Kretzschmar, M.: Persistent solutions in a model for parasitic diseases. J. Math. Biol. 27, 549–573 (1989)

    Google Scholar 

  14. Kuang Y., Freedman, H. I.: Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math. Biosci. 88, 67–84 (1988)

    Google Scholar 

  15. May, R. M.: personal communication

  16. May, R. M., Anderson, R. M.: Regulation and stability of host-parasite population interactions. II. Destabilizing processes. J. Anim. Ecol. 47, 249–267 (1978)

    Google Scholar 

  17. May, R. M., Anderson, R. M.: Population biology of infectious diseases: Part II. Nature 280, 455–461 (1979)

    Google Scholar 

  18. Waldstätter, R.: Pair formation in sexually transmitted diseases. In: C. Castillo-Chavez (ed.) Mathematical and statistical approaches to AIDS epidemiology. (Lect. Notes Biomath., vol. 83) Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  19. Ye, Yan-Qian: Theory of limit cycles. Translation of Mathematical Monographs, Vol. 66. AMS, Providence, R.I., 1986

    Google Scholar 

  20. Busenberg, S., Cooke, K. L., Thieme, H. R.: Demographic change and persistence of HIV/AIDS in a heterogeneous population. SIAM J. Appl. Math. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of this author was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekmann, O., Kretzschmar, M. Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29, 539–570 (1991). https://doi.org/10.1007/BF00164051

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00164051

Key words

Navigation