Skip to main content
Log in

Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It has been shown (a) that bacterial leaching of metal sulfides apparently requires the attachment of leach bacteria to metal sulfides, (b) that exopolymerbound iron compounds are responsible for or at least considerably increase the rate of the biological attack over the chemical rate, (c) that the primary attacking agent in leaching environments is the ferric iron hexahydrate ion, (c) that thiosulfate is the first intermediate sulfur compound, giving rise to a variety of other compounds including polythionate-containing periplasmic granula, and (d) that we have no idea about the actual concentrations of protons, ferrous/ferric and/or other cations, and sulfur compounds in the reaction space between the bacterium and the sulfide surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuna J, Rojas J, Amaro AM, Toledo H, Jerez CC (1992) Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol Lett 96: 37–42

    Google Scholar 

  • Arredondo R, Garcia A, Jerez CA (1994) Partial removal of lipopolysaccharide for Thiobacillus ferrooxidans affects its adhesion to solids. Appl Environ Microbiol 60: 2846–2851

    Google Scholar 

  • Blake II RC, Shute EA, Howard GT (1994) Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60: 3349–3357

    Google Scholar 

  • Chakraborty R, Roy P (1992) Chemotaxis of chemolithotrophic Thiobacillus ferrooxidans toward thiosulfate. FEMS Microbiol Lett 98: 9–12

    Google Scholar 

  • Colmer AR, Temple KT, Hinkle ME (1950) An iron-oxidizing bacterium from the acid mine drainage of some bituminous coal mines. J Bacteriol 59: 317–328

    Google Scholar 

  • Duncan DW, Landesman J, Walden CC (1967) Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals. Can J Microbiol 13: 397–403

    Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology. Dekker, New York

    Google Scholar 

  • Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55: 1249–1257

    Google Scholar 

  • Goroll D (1976) Ökologie von Thiobacillus neapolitanus und seine mögliche Mitwirkung im Leaching-Prozeß. Z Allg Mikrobiol 16: 3–7

    Google Scholar 

  • Hallmann R, Friedrich A, Koops HP, Pommerening-Roeser A, Rohde K, Zenneck C, Sand W (1993) Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physiochemical factors influence microbial metal leaching. Geomicrobiol J 10: 193–206

    Google Scholar 

  • Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 174: 269–278

    Google Scholar 

  • Loosdrecht MCM van, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54: 75–87

    Google Scholar 

  • Lowson RT (1982) Aqueous oxidation of pyrite by molecualr oxygen. Chem Rev 82: 461–497

    Google Scholar 

  • Luther GW III (1987) Pyrite oxidation and reduction: molecular orbital theory considerations. Geochim Cosmochim Acta 51: 3193–3199

    Google Scholar 

  • Mackintosh ME (1978) Nitrogen fixation by Thiobacillus ferrooxidans. J Gen Microbiol 105: 215–218

    Google Scholar 

  • Mittleman MW, Geesey GG (1985) Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Appl Environ Microbiol 49: 846–851

    Google Scholar 

  • Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and ferric iron. Geochim Cosmochim Acta 51: 1561–1571

    Google Scholar 

  • Mustin C, Donato P de, Berthelin J (1992) Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus ferrooxidans. Biotechnol Bioeng 39: 1121–1127

    Google Scholar 

  • Okuzumi M, Kita Y (1965) Studies on biochemistry of the thiobacilli. Part VI. Oxidation of thiosulfate to tetrathionate by T. thiooxidans. Agric Biol Chem 29: 1063–1068

    Google Scholar 

  • Pichtel JR, Dick WA (1991a) Sulfur, iron and solid phase transformations during the biological oxidation of pyritic mine spoil. Soil Biol Biochem 23: 101–107

    Google Scholar 

  • Pichtel JR, Dick WA (1991b) Influence of biological inhibitors on the oxidation of pyritic mine spoil. Soil Biol Biochem 23: 109–116

    Google Scholar 

  • Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990a) Oxidation of reduced inorganis sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293–306

    Google Scholar 

  • Pronk TJ, Meulenberg R, Berg DLC van den, Batenburg-van der Vegte W, Bos P, Kuenen JG (1990b) Mixotrophic and autotrophic growth of Thiobacillus acidophilus on glucose and thiosulfate. Appl Environ Microbiol 56: 3395–3401

    Google Scholar 

  • Rickard PAD, Vanselow DG (1978) Investigations into the kinetics and stochiometry of bacterial oxidation of covellite (CuS) using a polarographic oxygen probe. Can J Microbiol 24: 998–1003

    Google Scholar 

  • Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149: 401–405

    Google Scholar 

  • Rossi G (1990) Biohydrometallurgy. McGraw-Hill, Hamburg

    Google Scholar 

  • Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58: 85–92

    Google Scholar 

  • Sand W, Hallmann R, Rohde K, Sobotke B, Wentzien S (1993) Controlled microbiological in-situ stope leaching of a sulphidic ore. Appl Microbiol Biotechnol 40: 421–426

    Google Scholar 

  • Schippers A, Hallmann R, Rège H von, Wentzien S, Sand W (1994) Microbial diversity in uranium mine waste heaps. Appl Environ Microbiol 61 (in press)

  • Sinha DB, Walden CC (1966) Formation of polythionates and their interrelationships during oxidation of thiosulphate by T. ferrooxidans. Can J Microbiol 12: 1041–1054

    Google Scholar 

  • Steudel R (1989) On the nature of the “elemental sulfur” (So) produced by sulfur-oxidizing bacteria — a model for So globules. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin Heidelberg New York, pp 289–303

    Google Scholar 

  • Steudel R, Holdt G (1988) Solubilization of elemental sulfur in water by cationic and anionic surfactants. Angew Chem Int Ed Engl 27: 1358–1359

    Google Scholar 

  • Steudel R, Holdt G, Göbel T, Hazeu W (1987) Chromatographic separation of higher polythionates SnO 2−6 (n = 3...22) and their detection in cultures of Thiobacillus ferrooxidans; molecular composition of bacterial sulfur excretions. Angew Chem Int Ed Engl 26: 151–153

    Google Scholar 

  • Sugio T, Mizunashi W, Inagaki K, Tano T (1987) Purification and some properties of sulfur: ferric iron oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 169: 4916–4922

    Google Scholar 

  • Tributsch H, Bennett JC (1981a) Semiconductor — electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31: 565–577

    Google Scholar 

  • Tributsch H, Bennett JC (1981b) Semiconductor — electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties. J Chem Technol Biotechnol 31: 627–635

    Google Scholar 

  • Tuovinen (1990) Biological fundamentals of mineral leaching processes. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 55–77

    Google Scholar 

  • Wentzien S, Sand W, Albertsen A, Steudel R (1994) Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography. Arch Microbiol 161: 116–125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sand, W., Gerke, T., Hallmann, R. et al. Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43, 961–966 (1995). https://doi.org/10.1007/BF00166909

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00166909

Keywords

Navigation