Skip to main content
Log in

Model of scuffing based on the vulnerability of an elastohydrodynamic oil film to chemical degradation catalyzed by the contacting surfaces

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A model of scuffing is developed based on the premise that metallic surfaces can catalyze degradation of the lubricant film in situ. A failure mechanism for elastohydrodynamic films based on rapid decomposition of mineral and synthetic oils involving chemical reaction between entrapped oil and the containing surfaces is proposed. It is suggested that this destruction of the elastohydrodynamic oil film allows adhesion between nascent metal of opposing surfaces in the contact which in turn causes scuffing. Suppression of scuffing by the application of coatings that do not catalyze the oil decomposition and by the action of some lubricant additives which may block the catalytic effect of metallic surfaces is discussed. Effect of solid lubricant films and contaminant layers on scuffing is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Blok, in: Interdisciplinary Approach to Lubrication of Concentrated Contacts, ed. P.M. Ku, Washington DC, Scientific and Technical Information Division, NASA (1970) pp. 153–248.

  2. A. Dyson, Tribol. Int. (1975) 77, 117.

    Google Scholar 

  3. W.J.S. Grew and A. Cameron, Proc. Roy. Soc. A 327 (1972) 47.

    Google Scholar 

  4. S.C. Lee and H.S. Cheng, Trans. ASME, J. Tribol. 113 (1991) 327.

    Google Scholar 

  5. G.W. Stachowiak and A.W. Batchelor, Engineering Tribology (Elsevier Sequoia, Lausanne, 1993) pp. 444–451.

    Google Scholar 

  6. V.K. Ausherman, H.S. Nagaraj, D.M. Sanborn and W.O. Winer, Trans. ASME, J. Lubrication Technol. 98 (1976) 236.

    Google Scholar 

  7. D.B. Clark, E.E. Klaus and S.M. Hsu, Lubrication Eng. 41 (1985) 280.

    Google Scholar 

  8. H. Blok, in: General Discussion on Lubrication, Vol. 2 (Inst. Mech. Engrs., London, 1937) pp. 222–235.

    Google Scholar 

  9. J.C. Jaeger, Proc. Roy. Soc. N.S.W. 76 (1943) 203.

    Google Scholar 

  10. J.F. Archard, Wear 2 (1958/59) 438.

    Google Scholar 

  11. S.M. Hsu, M.C. Shen, E.E. Klaus, H.S. Cheng and P.I. Lacey, Wear 175 (1994) 209.

    Google Scholar 

  12. D.W. Morecroft, Wear 18 (1971) 333.

    Google Scholar 

  13. K. Meyer, H. Berndt and B. Essiger, Appl. Surf. Sci. 4 (1980) 154.

    Google Scholar 

  14. K. Nakayama, Wear 178 (1994) 61.

    Google Scholar 

  15. A. Burgdorfer, Trans. ASME, J. Basic Eng. 81 (1959) 94.

    Google Scholar 

  16. M. Ibrahim and A. Cameron, in: Proc. Lubrication and Wear Convention, 1963 Inst. Mech. Engrs. Publ., London, (1963) pp. 70–80.

    Google Scholar 

  17. G.M.S. De Silva, J.A. Leather and R.S. Sayles, in: Proc. 12th Leeds-Lyon Symp. on Tribology, Mechanisms and Surface Distress, eds. D. Dowson, C.M. Taylor, M. Godet and D. Berthe, September 1985 Inst. Mech. Engrs. Publ., London, (1986) pp. 258–272.

  18. L.G. Houpert and B.J. Hamrock, in: Proc. 12th Leeds-Lyon Symp. on Tribology, Mechanisms and Surface Distress, eds. D. Dowson, C.M. Taylor, M. Godet and D. Berthe, September 1985 pmInst. Mech. Engrs. Publ., London, (1986) pp. 146–155.

  19. X. Ai and L. Zheng, Trans. ASME, J. Tribol. 111 (1989) 569.

    Google Scholar 

  20. M. Kaneta, T. Sakai and H. Nishikawa, Tribol. Trans. 36 (1993) 605.

    Google Scholar 

  21. J. Ferrante and J.R. Smith, Surf. Sci. 38 (1973) 77.

    Google Scholar 

  22. E.L. Muetterties, Pure Appl. Chem. 54 (1982) 83.

    Google Scholar 

  23. A.W. Batchelor and G.W. Stachowiak, Wear 108 (1986) 185.

    Google Scholar 

  24. E.D. Tingle, Trans. Faraday Soc. 326 (1950) 97.

    Google Scholar 

  25. G.W. Stachowiak and A.W. Batchelor, Engineering Tribology (Elsevier Sequoia, Lausanne, 1993) pp. 439–441.

    Google Scholar 

  26. S. Mori and Y. Shitara, Appl. Surf. Sci. 68 (1993) 605.

    Google Scholar 

  27. B.A. Baldwin, Trans. ASLE 26 (1983) 37.

    Google Scholar 

  28. K.-B. Park and K.C. Ludema, Wear 175 (1994) 123.

    Google Scholar 

  29. S.-H. Choa, K.C. Ludema, G.E. Potter, B.M. DeKoven, T.A. Morgan and K.K. Kar, Wear 177 (1994) 33.

    Google Scholar 

  30. J.C. Enthoven, P.M. Cann and H.A. Spikes, Tribol. Trans. 36 (1993) 258.

    Google Scholar 

  31. W. Arabczyk, U. Narkiewicz, K. Kalucki and E. Freidenberg, Appl. Surf. Sci. 72 (1993) 45.

    Google Scholar 

  32. A.W. Batchelor, A. Cameron and H. Okabe, Trans. ASLE 28 (1985) 467.

    Google Scholar 

  33. A. Douglas, E.D. Doyle and B.M. Jenkins, in: Proc. Int. Tribology Conf. 1987, Melbourne, 2–4 December 1987, Inst. Eng. Aust. Nat. Conf. Publ. No. 87/18, pp. 52–58.

  34. Cz. Kajdas, Trans. ASLE 28 (1985) 21.

    Google Scholar 

  35. T.F. Gesell, E.T. Arakawa and T.A. Callcott, Surf. Sci. 20 (1970) 174.

    Google Scholar 

  36. S. Bair and W.O. Winer, Trans. ASME, J. Lubrication Technol. 100 (1978) 404.

    Google Scholar 

  37. D. Tabor and W.O. Winer, Trans. ASLE 8 (1965) 69.

    Google Scholar 

  38. A.R. Lansdown, Wear 175 (1994) 25.

    Google Scholar 

  39. G.V. Vinogradov, N.S. Nametkin and M.I. Nossov, Wear 8 (1965) 93.

    Google Scholar 

  40. W.E. Dennis, D.A. Sierawski and D.N. Ingebrigston, Rubber World 193 (1985) 26.

    Google Scholar 

  41. U. Muller, S. Jockusch and H.-J. Timpe, J. Polymer Science A 30 (1992) 2755.

    Google Scholar 

  42. W.H. Dickstein, R.L. Siemens and E. Hadziioannou, Thermochim. Acta 166 (1990) 137.

    Google Scholar 

  43. H. Wennerholm, in: Proc. 10th Scandinavian Corrosion Congress NKM10, Stockholm, 2–4 June 1986 (Swedish Corrosion Institute, Stockholm, 1986).

    Google Scholar 

  44. T. Taomoto, H. Fukumoto, K. Masuhara and K. Katayama, Nisshin Steel Tech. Report 55 (1986) 39.

    Google Scholar 

  45. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin and A. Vioux, J. Non-Cryst. Solids 147/148 (1992) 52.

    Google Scholar 

  46. Y. Israeli, J. Cavezzan and J. Lacoste, Polymer Degradation and Stability 37 (1992) 201.

    Google Scholar 

  47. U. Mueller and H.-J. Timpe, European Polymer J. 27 (1991) 621.

    Google Scholar 

  48. A. Jackson, M.N. Webster and J.C. Enthoven, Tribol. Trans. 37 (1994) 387.

    Google Scholar 

  49. W. Hartwecke and H.J. Grabke, Surf. Sci. 89 (1979) 174.

    Google Scholar 

  50. S. Andersson and E. Salas-Russo, Wear 174 (1994) 71.

    Google Scholar 

  51. S.C. Lee and H.S. Cheng, Trans. ASME 113 (1991) 318.

    Google Scholar 

  52. E. Johansson and S. Hogmark, J. Synth. Lubrication (1992) 265.

  53. P. Cann, H.A. Spikes and A. Cameron, ASLE Trans. 26 (1986) 48.

    Google Scholar 

  54. B. Jacobson, Wear 136 (1990) 99.

    Google Scholar 

  55. K. Meyer, Physikalisch-chemische Kristallographie, Copyright VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1977 (Gutenberg Buchdruckerei, Weimar, 1977).

    Google Scholar 

  56. D.J. Carre, Surf. Coatings Technol. 43/44 (1990) 609.

    Google Scholar 

  57. D.J. Carre, Tribol. Trans. 31 (1988) 437.

    Google Scholar 

  58. M.E. Eberhart, R.M. Latanison and K.H. Johnson, Acta Metall. 33 (1985) 1769.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batchelor, A.W., Stachowiak, G.W. Model of scuffing based on the vulnerability of an elastohydrodynamic oil film to chemical degradation catalyzed by the contacting surfaces. Tribol Lett 1, 349–365 (1995). https://doi.org/10.1007/BF00174259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174259

Keywords

Navigation