Skip to main content
Log in

The age and thermal history of Cerro Rico de Potosi, Bolivia

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Cerro Rico de Potosi, Bolivia, is the world's largest silver deposit and has been mined since the sixteenth century for silver, and for tin and zinc during the twentieth century, together with by-product copper and lead. The deposit consists primarily of veins that cut an altered igneous body that we interpret to be a dacitic volcanic dome and its underlying tuff ring and explosion breccia. The deposit is compositionally and thermally zoned, having a core of cassiterite, wolframite, bismuthinite, and arsenopyrite surrounded by a peripheral, lower-temperature mineral assemblage consisting principally of sphalerite, galena, lead sulfosalt, and silver minerals. The low-temperature assemblage also was superimposed on the high-temperature assemblage in response to cooling of the main hydrothermal system. Both the dacite dome and the ore fluids were derived from a larger magmatic/hydrothermal source at depth. The dome was repeatedly fractured by recurrent movement on the fault system that guided its initial emplacement. The dome was extruded at 13.8 ± 0.2 Ma (2σ), based on U-Th-Pb dating of zircon. Mineralization and alteration occurred within about 0.3 my of dome emplacement, as indicated by a 40Ar/39Ar date of 13.76 ± 0.10Ma (1σ) for sericite from the pervasive quartz-sericite-pyrite alteration associated with the main-stage, high-temperature, mineralization. The last thermal event able to reset zircon fission tracks occurred no later than 12.5 ± 1.1 Ma (1σ), as indicated by fission-tract dating. Minor sericite, and magmatic-steam alunite veins, were episodically formed around 11 Ma and between 8.3 and 5.7 Ma; the younger episodes occurring at the time of extensional fracturing at Cerro Rico and wide-spread volcanism in the adjacent Los Frailes volcanic field. None of these younger events appear to be significant thermal/mineralizing events; the exceptionally flat thermal release pattern of 39Ar from sericite and the results of the fission-tract dating of zircon show that none of the younger events was hot enough, and lasted long enough, to cause significant loss of Ar or annealing of zircon fission tracks. U-Th-Pb dating of zircon cores indicates a Precambrian progenitor for some zircons, and REE analyses of dated samples of hydrothermally altered dacite show the presence of a prominent positive Eu anomaly, which constrains interpretations of the origin and evolution of the magmatic/hydrothermal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfeld, F. (1967) Metallogenetic epochs and provinces of Bolivia. Mineral. Deposita 2:291–311

    Article  Google Scholar 

  • Ahlfeld, F., Schneider-Scherbina, A. (1964) Los yacimientos minerales y hidrocarburos de Bolivia. Bolivia Departmento Nacional de Geología, Boletin 5, 388 pp

  • Aitcheson, S.J., Harmon, R.S., Moorbath, S., Soler, P., SoriaEscalante, E., Steele, G., Swainbank, I., Wörner, G. (1995) Pb isotopes define basement domains of the Altiplano, central Andes. Geology 23:555–558

    Article  Google Scholar 

  • Avila-Salinas, W.A. (1990) Tin-bearing granites from the Cordillera Real, Bolivia; a petrological and geochemical review. In: Kay, S.M., Rapela, C.W., (eds.) Plutonism from Antarctica to Alaska. Geol. Soc. Am. Spec. Paper 241:145–159

  • Bau, M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 93:219–230

    Article  Google Scholar 

  • Bernstein, M. (1987) Considerations for the future Bolivian Industry; profitable mines through economy of scale. 1986 Internal Report prepared for the Mining Industry Task Force, Ministerio de Minas, La Paz, Bolivia

    Google Scholar 

  • Bernstein, M. (1989) Expectations for bulk tonnage hard rock and alluvial ores. United Nations Development Program, Project BOL/87/012, La Paz, Bolivia, 18 pp

  • Bernstein, M., Harrington, R. (1988) Observations on the economic geology and volcanic setting of Cerro Rico de Potosi. IUGS/UN-ESCO Deposit Modeling Workshop, Hydrothermal systems in Volcanic centers, September 4–16, 1988, La Paz, Bolivia

  • Berry, E.W. (1939) The fossil flora of Potosi, Bolivia. The Johns Hopkins Univ. Studies in Geol. 13:9–67

    Google Scholar 

  • Brüggen, J. (1934) Grundzüge der Geologie und Lagerstättenkunde Chiles. Heidelberg, 91 pp

  • Columba, C.M., Cunningham, C.G. (1993) Geologic model for the mineral deposits of the La Joya district, Oruro, Bolivia. Econ. Geol. 88:701–708

    Google Scholar 

  • Cunningham, C.G., Ericksen, G.E. (1991 a) Exploration guides for precious-metal deposits in volcanic domes. In: Good, E.E., Slack, J.F., Kotra, R.K. (eds.) Seventh Ann. V.E. McKelvey Forum on Mineral and Energy Resources. U.S. Geol. Surv. Circ. 1062:23–24

  • Cunningham, C.G., McNamee, J., Pinto Vásquez, José, Ericksen, G.E. (1991b) A model of volcanic dome-hosted precious metal deposits in Bolivia. Econ. Geol. 86:415–421

    Google Scholar 

  • Dalrymple, G.B., Lanphere, M.A. (1971) 40Ar/39Ar technique of K-Ar dating — A comparison with the conventional technique. Earth Planet. Sci. Lett. 12:300–308

    Google Scholar 

  • Dalrymple, G.B., Lanphere, M.A. (1974) 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochim. Cosmochim. Acta 38:715–738

    Google Scholar 

  • Deen, J.A., Rye, R.O., Munoz, J.L., Drexler, J.W. (1994) The magmatic-hydrothermal system at Julcani, Peru: Evidence from fluid inclusions and hydrogen and oxygen isotopes. Econ. Geol. 89:1924–1938

    Google Scholar 

  • Dodson, M.H. (1973) Closure temperature in cooling geochrono-logical and petrological systems. Contrib. Mineral. Petrol. 40:259–274

    Article  Google Scholar 

  • Ericksen, G.E., Luedke, R.G., Smith, R.L., Koeppen, R.P., Urquidi, B.F. (1990) Peraluminous igneous rocks of the Bolivian tin belt. Episodes 13:3–7

    Google Scholar 

  • Evans, D.L. (1990) Structure and mineral zoning of the Pailaviri section, Potosi, Bolivia. Econ. Geol. 35:737–750

    Google Scholar 

  • Evernden, J.F., Kriz, S.J., Cherroni, M.C. (1977) Potassium-argon ages of some Bolivian rocks. Econ. Geol. 72:1042–1061

    Google Scholar 

  • Francis, P.W., Baker, M.C.W., Halls, C. (1981) The Kari Kari caldera, Bolivia, and the Cerro Rico stock. J. Vol. Geotherm. Res. 10:113–124

    Google Scholar 

  • Graf, J.L., Jr. (1977) Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Econ. Geol. 72:527–548

    Google Scholar 

  • Grant, J.N., Halls, C., Avila Salinas, W., Snelling, N.J. (1979) K-Ar ages of igneous rocks and mineralization in part of the Bolivian tin belt. Econ. Geol. 74:838–851

    Google Scholar 

  • Halls, C., Schneider, A. (1988) Comentarios sobre la génesis de los yacimientos del cinturón estañífero boliviano. Rev. Geol. Chile 15:41–56

    Google Scholar 

  • Heald, P., Foley, N.K., Hayba, D.O. (1987) Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adulariasericite types. Econ. Geol. 82:1–26

    Google Scholar 

  • Hemley, J.J., Hostetler, P.B., Gude, A.J., Mountjoy, W.T. (1969) Some stability relations of alunite. Econ. Geol. 64:599–612

    Google Scholar 

  • Hurford, A.J. (1986) Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib. Mineral. Petrol. 92:413–427

    Article  Google Scholar 

  • Ishihara, S. (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol. 27:293–305

    Google Scholar 

  • Japan International Cooperation Agency (1985) K-Ar ages of mineralization at the Caracoles, Siglo XX, Colquechaca, Huari Huari, Unificada, Tasna, Inocentes and Buena Vista mines in Bolivia. In. Proy. Inst. Geol. Econ. Universidad Mayor de San Andres de Bolivia, 2, 270–280

  • Lehmann, B. (1990) Metallogeny of tin. In: Bhattacharji, S., Friedman, G.M., Neugebauer, H.J., Seilacher, A. (eds.) Lecture notes in Earth Sciences, 32. Springer, Berlin Heidelberg New York, 211 p

    Google Scholar 

  • Lehmann, B. (1994) Petrochemical factors governing the metallogeny of the Bolivian tin belt. In: Reutter, K.J., Scheuber, E., Wigger, P.J. (eds.) Tectonics of the Central Andes. Springer, Berlin Heidelberg New York, pp. 317–326

    Google Scholar 

  • Lindgren, W., Creveling, J.G. (1928) The ores of Potosi, Bolivia. Econ. Geol. 55:233–262

    Google Scholar 

  • Ljunggren, P. (1964) The tin deposits of Rondônia, Brazil, as compared with the Bolivian mineralization. Geol. Foren. Stockholm Förh. 85:431–435

    Google Scholar 

  • Meyer, C., Hemley, J.J. (1967) Wall rock alteration. In: Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits, Holt, Rinehart and Winston, New York, pp. 166–235

    Google Scholar 

  • Miller, B., Singewald, J. (1919) The mineral deposits of South America. McGraw-Hill 597 pp

  • Naeser, C.W. (1979) Fission-track dating and geologic annealing of fission tracks. In: Jäger, E., Hunziker, J.C. (eds.) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp. 154–169

    Google Scholar 

  • Noble, D.C., Silberman, M.L. (1984) Evolutión volcánica é hidrotermal y cronología de K-Ar del distrito minero de Julcani, Peru. Bol. Soc. Geol. Perú, vol jubilar, LX Aniversario 5:1–35

    Google Scholar 

  • Omiste, M. (1893) Cronicas Potosinas. Editora “El Siglo Ltda.”, Potosi, Bolivia

    Google Scholar 

  • Pinto-Vásquez, J. (1993) Volcanic dome-associated precious and base metal epithermal mineralization at Pulacayo, Bolivia. Econ. Geol. 88:697–700

    Google Scholar 

  • Redwood, S.D. (1987) The Soledad caldera, Bolivia: A Miocene caldera with associated epithermal Au-Ag-Cu-Pb-Zn mineralization. Geol. Soc. Am. Bull. 99:395–404

    Article  Google Scholar 

  • Rollinson, H. (1994) Origin of felsic sheets in the Scourian granulites: new evidence from rare earth elements. Scot. J. Geol. 30:121–129

    Google Scholar 

  • Rye, R.O. (1993) The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Econ. Geol. 88:733–753

    Google Scholar 

  • Rye, R.O., Bethke, P.M., Wasserman, M.D. (1992) The stable isotope geochemistry of acid sulfate alteration. Econ. Geol. 87:225–262

    Google Scholar 

  • Schneider, A. (1985) Eruptive processes, mineralization and isotopic evolution of the Los Frailes Karikari region/Bolivia. Unpublished Ph. D. Dissertation, Imperial College, University of London, England

    Google Scholar 

  • Schneider, A. (1987) Eruptive processes, mineralization and isotopic evolution of the Los Frailes Karikari region, Bolivia. Rev. Geol. Chile 30:27–33

    Google Scholar 

  • Schneider, A., Halls, C. (1985) Chronology of eruptive processes and mineralization of the Frailes Karikari volcanic field; eastern Cordillera, Bolivia. Comunicaciones 35:217–224

    Google Scholar 

  • Schneider, H.J., Lehmann, B. (1977) Contribution to a new genetical concept on the Bolivian tin province. In: Klemm, D.D., Schneider, H.J. (eds.) Time- and stratabound ore deposits. Springer, Berlin Heidelberg New York, pp. 153–168

    Google Scholar 

  • Sillitoe, R.H., Halls, C., Grant, J.N. (1975) Porphyry tin deposits in Bolivia. Econ. Geol. 70:913–927

    Google Scholar 

  • Snee, L.W., Sutter, J.F., Kelly, W.C. (1988) Thermochronology of economic mineral deposits: dating the stages of mineralization at Panasqueira, Portugal, by high-precision 40Ar/39Ar age spectrum techniques on muscovite. Econ. Geol. 83:335–354

    Google Scholar 

  • Steiger, R.H., Jäger, E. (1977) Subcommission on geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36:359–362

    Article  Google Scholar 

  • Steinmann, Gustav (1922) Über die junge Hebung der Kordillere Südamerikas. Geol. Runds. 13:1–8

    Google Scholar 

  • Stoffregen, R.E. (1987) Genesis of acid sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Econ. Geol. 82:1575–1591

    Google Scholar 

  • Stoffregen, R.E., Rye, R.O., Wasserman, M.D. (1994) Experimental studies of alunite I. 18O and D fractionation factors between alunite and water at 250–450 °C. Geochem. Cosmochim. Acta 58:903–916

    Google Scholar 

  • Sugaki, A., Kojima, S., Shimada, N. (1988) Fluid inclusion studies of the polymetallic hydrothermal ore deposits in Bolivia. Mineral. Deposita 23:9–15

    Article  Google Scholar 

  • Sugaki, A., Ueno, H., Shimada, N., Kusachi, I., Kitakaze, A., Hayashi, K., Kojima, S., Sanjines, V.O. (1983) Geological study on the polymetallic ore deposits in the Potosi district, Bolivia. Science Reports Tohoku University, Series III 15:409–460

    Google Scholar 

  • Suttill, K.R. (1988) Cerro Rico de Potosi. Eng. Min. J. March 1988, pp. 50–53

    Google Scholar 

  • Tarney, J., Jones, C.E. (1994) Trace element geochemistry of orogenic igneous rocks and crustal growth models. J. Geol. Soc. London 151:855–868

    Google Scholar 

  • Thorman, C.H., Drew, L.J. (1988) A report on site visits to some of the largest tin deposits in Brazil. U.S. Geol. Surv. Open-File Rep. 88-0594, 19 p

  • Turneaure, F.S. (1960a) A comparative study of major ore deposits of central Bolivia. Part I. Econ. Geol. 55:217–254

    Google Scholar 

  • Turneaure, F.S. (1960b) A comparative study of major ore deposits of central Bolivia. Part II. Econ. Geol. 55:574–606

    Google Scholar 

  • Turneaure, F.S. (1971) The Bolivian tin province. Econ. Geol. 66:215–225

    Google Scholar 

  • Turneaure, F.S., Marvin, T.C. (1947) Notas perliminares sobre la geología del distrito de Potosi. Mineria Boliviana 36:3–8

    Google Scholar 

  • Ueno, H., Sugaki, A. (1984) K-Ar ages of mineralization at the Morocala, Avicaya, Bolivar, Unificada, Chorolque and Tasna mines in Bolivia: Ann. Rep. JICA (Japan International Cooperation Agency) and UMSA (Universidad Mayor de San Andres), Part II 1:1162–1170

    Google Scholar 

  • Urquidi-Barrau, F. (1989) Tin and tungsten deposits of the Bolivian tin belt. In: Ericksen, G.E., Canas Pinochet, M.T., Reinemund, J.A. (eds.) Geology of the Andes and its relation to hydrocarbon and mineral resources. Houston, Texas. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series 11: 313–323

  • Weaver, B.L., Tarney, J. (1981) Lewisian gneiss geochemistry and Archean crustal development models. Earth Planet. Sci. Lett. 55:171–180

    Article  Google Scholar 

  • Wilson, G.A., Eugster, H.P. (1990) Cassiterite solubility and tin speciation in supercritical chloride solutions. In: Spencer, R.J., Chou, I-Ming (eds.) Fluid-mineral interactions: a tribute to H.P. Eugster. Geochem. Soc. Spec. Pub. 2:179–195

  • Zartman, R.E., Cunningham, C.G. (1995) U-Pb zircon dating of the 13.8-Ma dacite volcanic dome at Cerro Rico de Potosi, Bolivia. Earth Planet. Sci. Lett. 133:227–237

    Article  Google Scholar 

  • Zartman, R.E., Dyman, T.S., Tysdal, R.G., Pearson, R.C. (1995) U-Pb ages of volcanogenic zircon from porcellanite beds in the Vaughn Member of the mid-Cretaceous Blackleaf Formation, southwestern Mont. US Geol. Surv. Bull. 2113-B, p. B1-B16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunningham, C.G., Zartman, R.E., McKee, E.H. et al. The age and thermal history of Cerro Rico de Potosi, Bolivia. Mineral. Deposita 31, 374–385 (1996). https://doi.org/10.1007/BF00189185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189185

Keywords

Navigation