Skip to main content
Log in

Interaction of a vortex couple with a free surface

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The characteristics of three-dimensional flow structures (scars and striations) resulting from the interaction between a heterostrophic vortex pair in vertical ascent and a clean free surface are described. The flow features at the scar-striation interface (a constellation of whirls or coherent vortical structures) are investigated through the use of flow visualization, a motion analysis system, and the vortex-element method. The results suggest that the striations are a consequence of the short wavelength instability of the vortex pair and the helical instability of the tightly spiralled regions of vorticity. The whirls result from the interaction of striations with the surface vorticity. The whirl-merging is responsible for the reverse energy cascade leading to the formation and longevity of larger vortical structures amidst a rapidly decaying turbulent field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A c :

Area of a vortex core (Fig. 6b)

AR :

Aspect ratio of the delta wing model

B :

base width of delta wing

b 0 :

initial separation of the vortex couple

d 0 :

depth at which the vortex pair is generated

c :

average whirl spacing in the x-direction

E :

energy density

Fr :

Froude number (\(\left( {{{ = V_0 } \mathord{\left/ {\vphantom {{ = V_0 } {\sqrt {g b_0 } }}} \right. \kern-\nulldelimiterspace} {\sqrt {g b_0 } }}} \right)\))

g :

gravitational acceleration

L :

length of the scar band

L ko :

length of the Kelvin oval

N w :

number of whirls in each scar band

P c :

Perimeter of a vortex core

q :

surface velocity vector

r c :

core size of the whirl ( = 2A c/P c)

Re :

Reynolds number ( = \(\left( {{{ = V_0 } \mathord{\left/ {\vphantom {{ = V_0 } {{{v = \Gamma _0 } \mathord{\left/ {\vphantom {{v = \Gamma _0 } {2\pi v}}} \right. \kern-\nulldelimiterspace} {2\pi v}}}}} \right. \kern-\nulldelimiterspace} {{{v = \Gamma _0 } \mathord{\left/ {\vphantom {{v = \Gamma _0 } {2\pi v}}} \right. \kern-\nulldelimiterspace} {2\pi v}}}}} \right)\))

Rnd :

a random number

s :

inboard edge of the scar front (Fig. 6 a)

t :

time

u :

velocity in the x-direction

υ:

velocity in the y-direction

V b :

velocity imposed on a scar by the vortex couple (Fig. 6 a)

V 0 :

initial mutual-induction velocity of the vortex couple (=Γ0/2πb 0)

V t :

tangential velocity at the edge of the whirl core

w :

width of the scar front (Fig. 6 a)

z :

complex variable

z k :

position of the whirl center

α :

half included angle of V-shaped scar band

β :

wave number

Г m :

initial mean circulation of the whirls

Г 0 :

initial circulation of the vortex pair

Г w :

circulation of a whirl

γ min :

minimum survival strength of a whirl

Δt :

time step

gDz :

increment of z

gDζ :

change in vorticity

δ :

cut-off distance in velocity calculations

ɛ :

critical merging distance

κ :

curvature of the surface

λ :

wavelength

ν :

kinematic viscosity

ω :

angular velocity of a whirl core

References

  • Batchelor, G. K. 1967: An introduction to fluid dynamics. Camb. Univ. Press

  • Couder, Y.; Basdevant, C. 1986: Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech. 173, 225–251

    Google Scholar 

  • Crow, S. C. 1970: Stability theory for a pair of trailing vortices. AIAA J. 8, 2172–2179

    Google Scholar 

  • Dritschel, D. G. 1986: The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech. 172, 157–182

    Google Scholar 

  • Kochin, N. E.; Kibel, I. A.; Roze, N. V. 1964: Theoretical hydrodynamics. Interscience Publishers

  • Lamb, H. (Sir) 1945: Hydrodynamics. Dover Publications, (6th ed.), 221–224

  • Langmuir, I. 1938: Surface motion of water induced by wind. Science 87, 119–123

    Google Scholar 

  • Leeker, R. E., Jr. 1988: Free surface scars due to a vortex pair. M. Sc. Thesis, Naval Postgraduate Sch., Monterey, CA

    Google Scholar 

  • Marcus, D. L.; Berger, S. A. 1989: The interaction between a counter-rotating vortex pair in vertical ascent and a free surface. Phys. Fluids A1, 1988–2000

    Google Scholar 

  • Merzkirch, W. 1974: Flow visualization. New York: Academic Press

    Google Scholar 

  • Merzkirch, W. 1987: Techniques of flow visualization. AGARD-AG-302

  • Moore, D. W.; Saffman, P. G. 1973: Axial flow in laminar trailing vortices. Proc. Roy. Soc. A333, 491–508

    Google Scholar 

  • Ohring, S.; Lugt, H. J. 1989: Two counter-rotating vortices approaching a free surface in a viscous fluid. R & D Rep. No. DTRC-89/013, David Taylor Res. Center, Bethesda, MD

    Google Scholar 

  • Peltzer, R. D.; Garrett, W. D.; Smith, P. M. 1987: A remote sensing study of a surface ship wake. Int. J. Remote Sensing 8, 689–704

    Google Scholar 

  • Rayleigh, L. 1916: On the dynamics of revolving fluids. Scientific Papers 6, 447–453, Cambridge Univ. Press

  • Rosenhead, L. 1930: The spread of vorticity in the wake behind a cylinder. Proc. Roy. Soc. A127, 590–612

    Google Scholar 

  • Sarpkaya, T. 1983: Trailing vortices in homogeneous and density stratified media. J. Fluid Mech. 136, 85–109

    Google Scholar 

  • Sarpkaya, T. 1985: Surface signatures of trailing vortices and large scale instabilities. Proc. Colloquium on Vortex Breakdown (Sonderforschungsbereich 25), Aachen, Germany (ed. Staufenbiel, R. W.) 145–187

  • Sarpkaya, T. 1986: Trailing-vortex wakes on the free surface. Proc. 16th Symp. on Naval Hydrodynamics, Washington D.C., 38–50

  • Sarpkaya, T. 1989: Computational methods with vortices — 1988 Freeman Scholar Lecture. J. Fluids Eng. 111, 5–52

    Google Scholar 

  • Sarpkaya, T.; Elnitsky, J.; Leeker, R. E. 1988: Wake of a vortex pair on the free surface. Proc. 17th Symp. on Naval Hydrodynamics, Washington D.C., 53–60

  • Sarpkaya, T.; Henderson, D. O. 1984: Surface disturbances due to trailing vortices. Naval Postgraduate School Tech. Rep. No. NPS-69-84-004, Monterey, CA

  • Sarpkaya, T; Henderson, D. 1985: Surface scars and striations. AIAA Paper No. 85-0445, 1985

  • Sarpkaya, T.; Johnson, S. K. 1982: Trailing vortices in stratified fluids. Tech. Rep. No. NPS-69-82-003, Naval Postgraduate School, Monterey, CA

  • Scott, J. C. 1982: Flow beneath a stagnant film on water — the Reynolds ridge. J. Fluid Mech. 116, 283–296

    Google Scholar 

  • Telste, J. G. 1989: Potential flow about two counter-rotating vortices approaching a free surface. J. Fluid Mech. 201, 259–278

    Google Scholar 

  • Widnall, S. E. 1975: The structure and dynamics of vortex filaments. Ann. Rev. Fluid Mech. 7, 141–165

    Google Scholar 

  • Yu, D.; Tryggvason, G. 1990: The free-surface signature of unsteady, two-dimensional vortex flows. J. Fluid Mech. 218, 547–572

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarpkaya, T., Suthon, P. Interaction of a vortex couple with a free surface. Experiments in Fluids 11, 205–217 (1991). https://doi.org/10.1007/BF00192746

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192746

Keywords

Navigation