Skip to main content
Log in

Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres

  • Published:
Planta Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The fibres of the green-lint mutant (Lg) of cotton (Gossypium hirsutum L.) are suberized and contain a large proportion of wax. The unidentified components of the wax were separated into a colourless fluorescent fraction and a yellow pigmented fraction. Using ultraviolet spectroscopy and nuclear-magneticresonance (1H-NMR) spectroscopy, esterified trans-caffeic acid was identified as the only phenolic component in the colourless fraction. This fraction was further purified and was shown to contain caffeic acid esterified to fatty acids (mainly ω-hydroxy fatty acids), and glycerol in molar ratios of 4∶5∶5. When 2-aminoindan-2-phosphonic acid (AIP), an inhibitor of phenylalanine ammonia-lyase (EC 4. 3. 1. 5.) was added to ovules cultured in vitro, at the beginning of secondary wall formation, the fibres remained white and the colourless caffeic-acid derivative and the yellow compounds could no longer be detected by ultraviolet spectroscopy. Fibres grown in the presence of AIP were also examined in the electron microscope. Secondary cell walls were present in the treated fibres, but the electron-opaque suberin layers were replaced by apparently empty spaces. This result indicates that cinnamic-acid derivatives are covalently linked to suberin and have a structural role within the polymer or are involved in anchoring the polymer to the cellulosic secondary wall. Purified cell walls of green cotton fibres contained about 1% (of the dry weight) of bound glycerol, 0.9% of the glycerol being extractable with the wax fraction and 0.1% remaining in the cell-wall residue. The corresponding values for white fibres were 0.03% (total), 0.02% (wax), and 0.01% (cell-wall residue). Fibres synthesizing their secondary walls in the presence of AIP contained about normal amounts of bound glycerol in the wax fraction, but glycerol accumulation in the cell-wall residue was inhibited by about 95%. These observations indicate that glycerol is an important constituent of cotton-fibre suberin. Considerable amounts of bound glycerol could also be determined in exhaustively extracted cell walls of the cork layer of potato periderm (1.2%) and smaller amounts in the outer epidermal cell wall of Agave americana L. leaf (0.1%) indicating that the presence of glycerol in suberins and possibly also in cutins may be more widespread than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIP:

2-aminoindan-2-phosphonic acid

IAA:

indole-3-acetic acid

IBA:

indole-3-butyric acid

NMR:

nuclear magnetic resonance

TLC:

thin-layer chromatography

References

  • Beasley, C.A., Ting, I.P. (1973) The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am. J. Bot. 60, 130–139

    Article  CAS  Google Scholar 

  • Borg-Olivier, O., Monties, B. (1989) Caractérisation des lignines, acides phénoliques et tyramine dans les tissues subérisés du periderme naturel et du periderme de blessure de tubercule de pomme de terre. C R Acad. Sci. Sér. III. Paris 308, 141–147

    CAS  Google Scholar 

  • Brieskorn, C.H., Binnemann, P.H. (1974) Chemische Zusammensetzung des Suberins der Kartoffelschale. Z. Lebensm. Unters. Forsch. 154, 213–222

    Article  Google Scholar 

  • Daniels, D.G.H., Martin, H.F. (1968) Antioxidants in oats: glyceryl esters of caffeic and ferulic acids. J. Sci. Food Agric. 19, 710–712

    CAS  Google Scholar 

  • Falk, H., El Hadidi, M.N. (1961) Der Feinbau der Suberinschichten verkorkter Zellwände. Z. Naturforsch. 16b, 134–137

    Google Scholar 

  • Herrmann, K. (1978) Hydroxyzimtsäuren und Hydroxybenzoesäuren enthaltende Naturstoffe in Pflanzen. In: Fortschritte der Chemie organischer Naturstoffe, vol. 35, pp. 73–132. Herz, W., Grisebach, H., Kirby, G.W., eds. Springer, Wien

    Google Scholar 

  • Holloway, P.J. (1982) Structure and histochemistry of plant cuticular membranes: an overview. In: The plant cuticle (Linnean Society Symposium Series Number 10), pp. 1–32, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic press, London

    Google Scholar 

  • Ibrahim, R., Barron, D. (1989) Phenylpropanoids. In: Methods in plant biochemistry, vol. 1, Plant phenolics, pp. 75–111, Harborne, J.B., ed. Academic Press, London

    Google Scholar 

  • Kolattukudy, P.E. (1977) Lipid polymers and associated phenols, their chemistry, biosynthesis, and role in pathogenesis. In: Recent advances in phytochemistry, vol. 11: The structure, biosynthesis and degradation of wood, pp. 185–246, Loewus, F.A., Runeckles, V.C., eds. Plenum Press, New York

    Google Scholar 

  • Kolattukudy, P.E. (1980) Biopolyester membranes of plants: Cutin and suberin. Science 208, 990–1000

    CAS  PubMed  Google Scholar 

  • Kolattukudy, P.E. (1987) Lipid derived defensive polymers and waxes and their role in plant-microbe interaction. In: The biochemistry of plants. A comprehensive treatise, vol. 9: Lipids: Structure and function, pp. 291–314, Stumpf, P.K. ed. Academic Press, London

    Google Scholar 

  • Martin, J.T., Juniper, B.E. (1970) The cuticles of plants. Edward Arnold, London

    Google Scholar 

  • Matzke, K., Riederer, M. (1991) A comparative study into the chemical constitution of cutins and suberins from Picea abies (L.) Karst., Quercus robur L., and Fagus sylvatica L. Planta 185, 233–245

    Article  CAS  Google Scholar 

  • Monties, B. (1989) Lignins. In: Methods in plant biochemistry, vol. 1: Plant phenolics, pp. 113–157, Harborne, J.B., ed. Academic Press London

    Google Scholar 

  • Nissen, S.J., Sutter, E.G. (1990) Stability of IAA and IBA in nutrient medium to several tissue culture procedures. HortScience 25, 800–802

    CAS  Google Scholar 

  • Pereira, H. (1988) Chemical composition and variability of cork from Quercus suber L. Wood Sci. Technol. 22, 211–218

    Article  CAS  Google Scholar 

  • Ribas, I., Blasco, E. (1940) Investigaciones sobre el corcho. II. Determinacion cuantitativa de la glycerina existente. An. Real Soc. Esp. Fis. Quim. 36, 248–254

    CAS  Google Scholar 

  • Ryser, U. (1985) Cell wall biosynthesis in differentiating cotton fibres. Eur. J. Cell Biol. 39, 236–256

    CAS  Google Scholar 

  • Ryser, U. (1992) Ultrastructure of the epidermis of developing cotton (Gossypium) seeds: suberin, pits, plasmodesmata, and their implication for assimilate transport into cotton fibers. Am. J. Bot. 79, 14–22

    Article  Google Scholar 

  • Ryser, U., Holloway, P.J. (1985) Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species. Planta 163, 151–163

    Article  CAS  Google Scholar 

  • Ryser, U., Meier, H., Holloway, P.J. (1983) Identification and localization of suberin in the cell walls of green cotton fibres (Gossypium hirsutum L., var. green lint). Protoplasma 117, 196–205

    Article  CAS  Google Scholar 

  • Saeman, J.F., Buhl, J.L., Harris, E.F. (1945) Quantitative saccharification of wood and cellulose. Ind. Eng. Chem. Anal. Ed. 17, 35–37

    Article  CAS  Google Scholar 

  • Schmidt, H.W., Schönherr, J. (1982) Fine structure of isolated and non-isolated potato tuber periderm. Planta 154, 76–80

    Article  Google Scholar 

  • Sitte, P. (1959) Mischkörperdoppelbrechung der Korkzellwände. Naturwissenschaften 46, 260–261

    Article  Google Scholar 

  • Sitte, P. (1962) Zum Feinbau der Suberinschichten im Flaschenkork. Protoplasma 54, 555–559

    Article  Google Scholar 

  • Sitte, P. (1975) Die Bedeutung der molekularen Lamellenbauweise von Korkzellwänden. Biochem. Physiol. Pflanz. 168, 287–297

    Google Scholar 

  • Spurr, A.R., (1969) A low-viscosity resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–34

    Article  PubMed  CAS  Google Scholar 

  • Wattendorff, J., Holloway, P.J. (1984) Periclinal penetration of potassium permanganate into mature cuticular membranes of Agave and Clivia leaves: new implications for plant cuticle development. Planta 161, 1–11

    Article  Google Scholar 

  • Wieland, O.H. (1984) Glycerol. UV-method. In: Methods of enzymatic analysis, vol. 6, pp. 504–510, Bergmeyer, H.U. ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Yatsu, L.Y., Espelie, K.E., Kolattukudy, P.E. (1983) Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiol. 73, 521–524

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, W., Nimz, H., Seemüller, E. (1985) 1H and 13C NMR spectroscopic study of extracts from corks of Rubus idaeus, Solanum tuberosum, and Quercus suber. Holzforschung 39, 45–49

    Article  CAS  Google Scholar 

  • Zoń, J., Amrhein, N. (1992): Inhibitors of phenylalanine ammonialyase: 2-aminoindan-2-phosphonic acid and related compounds. Liebigs Ann. Chemie, pp. 625–628

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank J.P. Métraux and A.J. Buchala (Institut für Botanische Biologie, Freiburg, Switzerland) for critical reading of the manuscript, M. Schorderet for thin-sectioning and electron microscopy, F. Fehr for recording the NMR spectra, and P. Enz and L. Vincent for cultivating the cotton plants. This work was supported by the Swiss National Science Foundation, Grant No. 31-29988.90 to U. Ryser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmutz, A., Jenny, T., Amrhein, N. et al. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta 189, 453–460 (1993). https://doi.org/10.1007/BF00194445

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194445

Key words

Navigation