Skip to main content
Log in

First-principles study of the α-Al2O3(0001)/Cu(111) interface

  • Published:
Interface Science

Abstract

Adhesive energetics and interfacial electronic structures have been computed from first principles for the Cu/Al2O3 interface. Recent transmission electron microscopy results of Cu grown by molecular beam epitaxy on Al2O3(0001) were helpful in modelling the interfacial atomic structure. We found that Al2O3(0001) relaxation effects can lower the work of adhesion W ad by over a factor of 3. Our computed W ad value is in reasonably good agreement with experiment, being somewhat larger, as expected from our assumption of a coherent interface. One might begin to understand this metal/ceramic adhesion as a competition between Cu and Al for oxide formation, which is easily won by Al. However this simple picture is complicated by several indications of a significant metallic/covalent component to the Cu/Al2O3 adhesive bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinn D.Flinn, Calvin S.Lo, Frank W.Zok, and Anthony G.Evans, J. Am. Ceram. Soc. 76, 369 (1993).

    Google Scholar 

  2. J.F.Burgess, C.A.Neugebauer, and G.Flanagan, J. Electrochem. Soc. 122, 688 (1972).

    Google Scholar 

  3. K.C.Taylor, Automobile Catalytic Converters, in Catalysis Science and Technology, edited by J.R.Anderson and M.Boudart (Springer-Verlag, New York, 1984). Vol. 5.

    Google Scholar 

  4. Kirk A.Rogers, Kevin P.Trumble, Brain J.Dalgleish, and Ivar E.Reimanis, J. Am. Ceram. Soc. 77, 2036 (1994).

    CAS  PubMed  Google Scholar 

  5. U. Schönberger, O.K. Andersen, and M. Methfessei, Acta Metall. Mater. 40, Suppl., S1 (1992).

  6. T.Hong, J.R.Smith, and D.J.Srolovitz, Acta Metall. Mater. 43, 2721 (1995). Ibid., Phys. Rev. Letters 72, 4021 (1994).

    Google Scholar 

  7. C.Kruse, M.W.Finnis, V.Y.Milman, M.C.Payne, A.DeVita, and M.J.Gillan, J. Am. Ceram. Soc. 77, 431 (1994).

    Google Scholar 

  8. R.V.Kasowski, F.S.Ohuchi, and R.H.French, Physica B 150, 44 (1988). These authors have carried out first-principles computations of Cu on Al2O3. Their results were consistent with ours in that they found the Cu bonded preferentially to the O rather than to the surface Al atoms. A detailed comparison is not possible, however, because they treated a rather different interface, i.e., a fractional monolayer of Cu on a (1010) Al2O3 surface. We chose the Cu(111)/Al2O3 (0001) configuration because of its recent experimental [9] confirmation.

    Google Scholar 

  9. G.Dehm, M.Rühle, G.Ding, and R.Raj, Phil. Mag. B 71, 1111 (1995).

    Google Scholar 

  10. J.E.McDonald and J.G.Eberhart, Trans. Met. Soc. AIME 233, 512 (1965).

    Google Scholar 

  11. D.Chatain, L.Coudurier, and N.Eustathopoulos, Rev. Phys. Appl. 23, 1055 (1988).

    Google Scholar 

  12. W.Y.Ching and Y.Xu, J. Am. Ceram. Soc. 77, 404 (1994).

    Google Scholar 

  13. J.A.Appelbaum and D.R.Hamann, Solid State Commu. 27, 881 (1978); see also P.J. Feibelman, J.A. Appelbaum, and D.R. Hamann, Phys. Rev. B 20, 1433 (1979).

    Google Scholar 

  14. G.L.Zhao, T.C.Leung, B.N.Harmon, M.Keil, M.Muller, and W.Weber, Phys. Rev. B 40, 7999 (1989); G.L. Zhao and B.N. Harmon, Phys. Rev. B, 48, 2031 (1993); G.L. Zhao, J. Callaway, and M. Hayashibara, Phys. Rev. B, 48, 15781 (1993).

    Google Scholar 

  15. J.Guo, D.E.Ellis, and D.J.Lam, Phys. Rev. B 45, 3204 (1992).

    Google Scholar 

  16. J.Guo, D.E.Ellis, and D.J.Lam, Phys. Rev. B 45, 13647 (1992).

    Google Scholar 

  17. M.Gautier, G.Renaud, L.PhamVan, B.Villette, M.Pollak, N.Thromat, F.Jollet, and J.P.Duraud, J. Am. Ceram. Soc. 77, 323 (1994).

    Google Scholar 

  18. I.Manassidis and M.J.Gillan, J. Am. Ceram. Soc. 77, 335 (1994).

    Google Scholar 

  19. R.O.Gartland, S.Berge, and B.J.Slagovold, Phys. Rev. Letters 28, 738 (1972).

    Google Scholar 

  20. J.R.Smith, F.J.Arlinghaus, and J.G.Gay, Solid State Commun. 24, 279 (1977).

    Google Scholar 

  21. An example of this for Nb on Al2O3(0001) can be found in Ref. 7 and ibid., to be published.

  22. Y.-N.Xu and W.Y.Ching, Phys. Rev. B 43, 4461 (1991).

    Google Scholar 

  23. J.H.Rose, J.Ferrante, and J.R.Smith, Phys. Rev. Lett. 47, 675 (1981); T. Hong, J.R. Smith, D.J. Srolovitz, J.G. Gay, and R. Richter, Phys. Rev. B 45, 8775 (1992); A. Banerjea and J.R. Smith. Phys. Rev. B 37, 6632 (1988).

    Google Scholar 

  24. R.M.Pilliar and J.Nutting, Phil. Mag. 16, 181 (1967).

    Google Scholar 

  25. T.Hong, J.R.Smith, and D.J.Srolovitz, Phys. Rev. B 47, 13, 615 (1993).

    Google Scholar 

  26. J.Ferrante and J.R.Smith, Surf. Sci. 38, 77 (1973).

    Google Scholar 

  27. See Table 10 of Introduction to Solid State Physics, edited by C. Kittel, 5th edition (John Wiley & Sons, 1976).

  28. J.R.Smith, J.G.Gay, and F.J.Arlinghaus, Phys. Rev. B 21, 2201 (1980).

    Google Scholar 

  29. H.Wawra, Z. Metallk. 66, 395, 492 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G.L., Smith, J.R., Raynolds, J. et al. First-principles study of the α-Al2O3(0001)/Cu(111) interface. Interface Sci 3, 289–302 (1996). https://doi.org/10.1007/BF00194707

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194707

Keywords

Navigation