Skip to main content
Log in

Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures

Reactions with monolignols and lignin model compounds

  • Published:
Planta Aims and scope Submit manuscript

Abstract

We have investigated the abilities of extracellular enzymes from dark-grown cell-suspension cultures of sycamore maple (Acer pseudoplatanus L.) to oxidize monolignols, the precursors for lignin biosynthesis in plants, as well as a variety of other lignin-related compounds. Laccase and peroxidase both exist as a multiplicity of isoenzymes in filtrates of spent culture medium, but their abilities to produce water-insoluble, dehydrogenation polymers (DHPs) from the monolignols (in the presence of hydrogen peroxide for the peroxidase reaction) appear identical whether or not the enzymes are purified from the concentrated filtrates or left in a crude mixture. The patterns of bonds formed in these DHPs are identical to those found in DHPs synthesized using horseradish peroxidase or fungal laccase, and many of these bonds are found in the natural lignins extracted from different plant sources. On the other hand, sycamore maple laccase is very much less active on phenolic substrates containing multiple aromatic rings than is sycamore maple peroxidase. We suggst that whereas laccase may function during the early stages of lignification to polymerize monolignols into oligo-lignols, cell-wall peroxidases may function when H2O2 is produced during the later stages of xylem cell development or in response to environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DHP:

dehydrogenation polymer

IEF:

isoelectric focuring

NMR:

nuclear magnetic resonance

PAGE:

polyacrylamide gel electrophoresis

References

  • Apostol, I., Heinstein, P.F., Low, P.S. (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 90, 109–116

    Google Scholar 

  • Bax, A., Summer, M. (1986) 1H and 13C assignments from sensitivity enhanced detection of heteronuclear multiple bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108, 2093–2094

    Google Scholar 

  • Bligny, R., Gaillard, J., Douce, R. (1986) Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Effects of a copper deficiency. Biochem. J. 237, 583–588

    Google Scholar 

  • Braunschweiler, L., Ernst, R.R. (1983) Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. Mag. Res. 53, 521–528

    Google Scholar 

  • Brunow, G., Ede, R.M., Simola, L.K., Lemmetyninen, J. (1990) Lignins released from Picea abies suspension cultures-true native spruce lignins? Phytochemistry 29, 2535–2538

    Google Scholar 

  • Carcellar, M., Davey, M.R., Fowler, M.W., Street, H.E. (1971) The influence of sucrose, 2,4-D and kinetin on the growth, fine structure, and lignin content of cultured sycamore cells. Protoplasma 73, 367–385

    Google Scholar 

  • Chum, H.L., Johnson, D.K., Tucker, M.P., Himmel, M.E. (1987) Some aspects of lignin characterization by high performance size exclusion chromatography using styrene divinylbenzene copolymer gels. Holzforschung 41, 97–108

    Google Scholar 

  • Dean, J.F.D., Eriksson, K-E.L. (1992) Biotechnological modification of lignin structure and composition in forest trees. Holzforschung 46, 135–147

    Google Scholar 

  • Dean, J.F.D., Gamble, H.R., Anderson, J.D. (1989) The ethylene biosynthesis-inducing xylanase: Its induction in Trichoderma viride and certain plant pathogens. Phytopathology 79, 1071–1078

    Google Scholar 

  • Downes, G., Turvey, N.D. (1986) Reduced lignification in Pinus radiata D. Don. Aust. For. Res. 16, 371–377

    Google Scholar 

  • Downes, G., Turvey, N.D. (1990) The effect of nitrogen and copper on characteristics of wood tissue in Pinus radiata. Can. J. For. Res. 20, 1369–1377

    Google Scholar 

  • Downes, G., Ward, J.V., Turvey, N.D. (1991) Lignin distribution across tracheid cell walls of poorly lignified wood from deformed copper deficient Pinus radiata (D. Don). Wood Sci. Technol. 25, 7–14

    Google Scholar 

  • Driouich, A., Lainé, A-C., Vian, B., Faye, L. (1992) Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J. 2, 13–24

    Google Scholar 

  • Ellwardt, P., Haider, K., Ernst, L. (1981) Untersuchungen des mikrobiellen Ligninabbaues durc 13C-NMR-Spektroskopie an spezifisch 13C-angereichertem DHP-Lignin aus Coniferylalkohol. Holzforschung 35, 103–109

    Google Scholar 

  • Elstner, E.F. (1982) Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol. 33, 73–96

    Google Scholar 

  • Eriksson, K-E.L., Blanchette, R.A., Ander, P. (1990) Biodegradation of lignin. In: Microbial and enzymatic degradation of wood and wood Components, pp. 225–334. Springer-Verlag, Berlin

    Google Scholar 

  • Franke, W. (1960) Handbuch der Pflanzenphysiologie, vol. 12/1, p. 401. Springer-Verlag, Berlin

    Google Scholar 

  • Freudenberg, K. (1959) Biosynthesis and constitution of lignin. Nature 183, 1152–1155

    Google Scholar 

  • Freudenberg, K. (1968) The constitution and biosynthesis of lignin. In: Constitution and biosynthesis of lignin, pp. 45–122, Freudenberg, K., Neish, A.C., eds. Springer-Verlag, Berlin

    Google Scholar 

  • Freudenberg, K., Geiger, H. (1963) Pinoresinolid und andere Zwischenprodukte der Ligninbildung. Chem. Ber. 96, 1265–1270

    Google Scholar 

  • Freudenberg, K., Harkin, J., Reichert, M., Fukuzumi, T. (1958) Die an der Verholzung beteiligten Enzyme. Die Dehydrierung des Sinapinalkohols. Chem. Ber. 91, 581–590

    Google Scholar 

  • Graham, D. (1976) Anomalous water relations in copper-deficient wheat plants. Aust. J. Plant Physiol. 3, 229–236

    Google Scholar 

  • Greppin, H., Penel, C., Gaspar, Th. (1986) Molecular and physiological aspects of plant peroxidases. University of Geneva, Geneva, Switzerland

    Google Scholar 

  • Harkin, J.M., Obst, J.R. (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180, 296–298

    Google Scholar 

  • Higuchi, T. (1959) Studies on the biosynthesis of lignin. In: Biochemistry of wood, pp. 161–188, Kratzl, K., Billek, G., eds. Pergamon Press, New York

    Google Scholar 

  • Higuchi, T. (1985) Biosynthesis of lignin. In: Biosynthesis and biodegradation of wood components, pp. 141–160, Higuchi, T., ed. Academic Press, Orlando

    Google Scholar 

  • Hoyle, M.C. (1977) High resolution of peroxidase-indoleacetic acid oxidase isozymes from horseradish by isoelectric focusing. Plant Physiol. 60, 787–793

    Google Scholar 

  • Kaplan, D.L. (1979) Reactivity of different oxidases with lignins and lignin model compounds. Phytochemistry 18, 1917–1919

    Google Scholar 

  • Kawai, S., Umezawa, T., Higuchi, T. (1988) Degradative mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262, 99–110

    Google Scholar 

  • Kirk, T.K., Brunow, G. (1988) Synthetic 14C-labeled lignins. Methods Enzymol. 161, 65–73

    Google Scholar 

  • Koblitz, H., Koblitz, D. (1964) Participation of cytochrome oxidase in lignification. Nature 204, 199–200

    Google Scholar 

  • Levine, W.G. (1966) Laccase, a review. In: The biochemistry of copper, pp. 371–387, Peisach, J., Aisen, P., Blumberg, W.E., eds. Academic Press, New York

    Google Scholar 

  • Lewis, N.G., Yamamoto, E. (1990) Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 455–496

    Google Scholar 

  • Li, Z.S., Attias, J., Thellier, M. (1990) Filtration stress-induced variations of peroxidase activity in cell suspension cultures of sycamore (Acer pseudoplatanus) cells. Physiol. Plant. 78, 22–28

    Google Scholar 

  • Marklund, S., Ohlsson, P-I., Opara, A., Paul, K-G. (1974) The substrate profiles of the acidic and slightly basic horseradish peroxidases. Biochim. Biophys. Acta 350, 304–313

    Google Scholar 

  • Mayer, A.M., Harel, E. (1979) Polyphenol oxidases in plants. Phytochemistry 18, 193–215

    Google Scholar 

  • Muller, L. (1979) Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. Chem. Soc. 101, 4481

    Google Scholar 

  • Nakamura, W. (1967) Studies on the biosynthesis of lignin. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J. Biochem. (Tokyo) 62, 54–61

    Google Scholar 

  • Nimz, H., Mogharab, I., Ludemann, H. (1974) 13C-Kernresonanz-spektren von Ligninen. Makromol. Chem. 175, 2563–2575

    Google Scholar 

  • Oldenkamp, L, Smilde, K.W. (1966) Copper deficiency in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Plant Soil 25, 150–152

    Google Scholar 

  • Quideau, S., Ralph, J. (1992) Facile large scale synthesis of coniferyl, sinapyl and p-coumaryl alcohol. J. Argic. Food Chem. 40, 1108–1110

    Google Scholar 

  • Robert, D., Chen, C. (1989) Biodegradation of lignin in spruce wood by Phanerochaete chrysosporium: Quantitative analysis of biodegraded spruce lignins by 13C NMR spectroscopy. Holzforschung 43, 323–332

    Google Scholar 

  • Sarkanen, K.V. (1971) Precursors and their polymerization. In: Lignins: Occurrence, formation, structure and reactions, pp. 145–163, Sarkanen, K.V., Ludwig, C.H., eds. Wiley-Interscience, New York

    Google Scholar 

  • Sarkanen, K.V., Ludwig, C.H. (1971) Definition and nomenclature. In: Lignins: Occurrence, formation, structure and reactions, pp. 1–18, Sarkanen, K.V., Ludwig, C.H., eds. Wiley-Interscience, New York

    Google Scholar 

  • Savidge, R.A., Randeniya, P.V. (1992) Cell wall-bound coniferylalcohol oxidase associated with lignification in conifers. Phytochemistry 31, 2959–2966

    Google Scholar 

  • Shannon, L.M., Kay, E., Lew, J.Y. (1966) Peroxidase isozymes from horseradish roots I. Isolation and physical properties. J. Biol. Chem. 241, 2166–2172

    Google Scholar 

  • Sterjiades, R., Dean, J.F.D., Eriksson, K-E.L. (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols, Plant Physiol. 99, 1162–1168

    Google Scholar 

  • Stevenson, T.T., McNeil, M., Darvill, A.G., Albersheim, P. (1986) Structure of plant cell walls XVIII. An analysis of the extracellular polysaccharides of suspension-cultured sycamore cells. Plant Physiol. 80, 1012–1019

    Google Scholar 

  • van Huystee, R.B. (1987) Some molecular aspects of plant peroxidase biosynthetic studies. Annu. Rev. Plant Physiol. 38, 205–219

    Google Scholar 

  • Wariishi, H., Morohoshi, N., Haraguchi, T. (1987) Degradation of lignin by the extracellular enzymes of Coriolus versicolor VII. Effective degradation of syringyl type β-aryl ether lignin model compounds by Laccase III. Mok. Gakk. 33, 892–898

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank Dr. Masahiro Samejima (University of Tokyo) for provision of lignin model compounds and Dr. Göran Gellerstadt (Royal Institute of Technology, Sweden) for helpful suggestions regarding stilbene formation and light spectroscopy. Monolignols were prepared by Mr. Nate Weymouth with help from Dr. Herb Morrison (USDA/ARS, Richard B. Russell Research Center, Athens, GA). Thanks also to Ms. Izabella Poppe of the Complex Carbohydrate Research Center (CCRC) for assistance with carbohydrate analyses, and Mr. Vincent Sorrentino for help with the growth of cell-suspension cultures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterjiades, R., Dean, J.F.D., Gamble, G. et al. Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Planta 190, 75–87 (1993). https://doi.org/10.1007/BF00195678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00195678

Key words

Navigation