Skip to main content
Log in

Strategies for retinal design in arthropod eyes of low F-number

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The superposition eyes and simple eyes of many arthropods have apertures (A) with a diameter bigger than, or about the same size as, the focal length of the eye (f). That is, these eyes have low F-numbers (f/A). Many of the light rays focussed onto a photoreceptor will not be trapped by total internal reflection in the photoreceptor and will therefore pass through and be absorbed in photoreceptors other than that for which the light was intended. This spread of light in the retina leads to a broadening of the angular-sensitivity function and a consequent degrading of the image at the retinal level. A number of solutions to this problem are found in nature, with the most effective that of isolating the photoreceptors with a sheath of either light-absorbing pigment or reflecting tapetum. A ray-tracing model was used to assess the relative merits of the tapetal and pigment sheath designs in low F-number superposition eyes, and also to investigate the effect of changing the refractive index and absorption coefficient of the rhabdom. Which sheathing solution is best depends on the quality of the image on the retina, on the spacing of the rhabdoms in the retina and on the intensity of light normally experienced by the eye. In a retina with closely packed rhabdoms, the model predicts full sheathing to be the optimal solution if the image is well-focussed, partial sheathing if poorly focussed and no sheathing if moderately well-focussed. In a retina with rhabdoms spaced apart and a well-focussed image, the model predicts partial sheathing to be optimal. A pigment sheath is predicted to be useful in eyes which experience bright light and have no need for high sensitivity. A tapetal sheath is predicted to be useful at any intensity. A survey of arthropod eyes with low F-number supports the predictions of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball EE, Kao LC, Stone RC, Land MF (1986) Eye structure and optics in the pelagic shrimpAcetes sibogae (Decapoda, Natan- tia, Sergestidae) in relation to light-dark adaptation and natural history. Phil Trans R Soc Lond B 313:251–270

    Google Scholar 

  • Blest AD (1985) The fine structure of spider photoreceptors in relation to function. In: Barth FG (ed) Neurobiology of arach- nids. Springer, Berlin Heidelberg New York, pp 79–102

    Google Scholar 

  • Blest AD, Land MF (1977) The physiological optics ofDinopis subrufus L. Koch: a fish lens in a spider. Proc R Soc Lond B 196:197–222

    CAS  PubMed  Google Scholar 

  • Bruin GHP de, Crisp DJ (1957) The influence of pigment migration on vision of higher Crustacea. J Exp Biol 34:447–463

    Google Scholar 

  • Bruno MS, Barnes SN, Goldsmith TH (1977) The visual pigment and visual cycle of the lobsterHomarus. J Comp Physiol 120:123–142

    Article  CAS  Google Scholar 

  • Bryceson KP, McIntyre P (1983) Image quality and acceptance angle in a reflecting superposition eye. J Comp Physiol 151:367–380

    Article  Google Scholar 

  • Bursey CR (1975) The microanatomy of the compound eye ofMunida irrasa (Decapoda, Galatheidae). Cell Tissue Res 160:505–514

    Article  CAS  PubMed  Google Scholar 

  • Caveney S, McIntyre P (1981) Design of graded-index lenses in the superposition eyes of scarab beetles. Phil Trans R Soc Lond B 294:589–632

    Google Scholar 

  • Denton EJ, Nicol JAC (1964) The chorioidal tapeta of some car- tilaginous fishes (Chondrichthyes). J Mar Biol Assoc UK 44:219–258

    Google Scholar 

  • Doujak FE (1985) Can a shore crab see a star? J Exp Biol 166:385–393

    Google Scholar 

  • Dubs A (1982) The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J Comp Physiol 146:321–343

    Article  Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolu- tionary perspective. Nature 233:849–853

    Google Scholar 

  • Fischer A, Horstmann G (1971) Der Feinbau des Auges der Mehl- motteEphestia kühniella Zeller (Lepidoptera, Pyralididae). Z Zellforsch 116:275–304

    Article  CAS  PubMed  Google Scholar 

  • Gokan N (1982a) The compound eye of the soybean beetle,Anomala rufocuprea Motschulsky (Coleoptera, Scarabaeidae). Appl Entomol Zool 17:227–237

    Google Scholar 

  • Gokan N (1982b) The fine structure of the compound eyes ofMaladera orientalis andParaserica grisea (Coleoptera, Scarabaeidae). Kontyu 50:330–343

    Google Scholar 

  • Gokan N (1989) The compound eye of the dung beetleGeotrupes auratus (Coleoptera, Scarabaeidae). Appl Entomol Zool 24:133–146

    Google Scholar 

  • Gokan N, Meyer-Rochow VB, Nagashima T (1987) Fine structure of the compound eye of the skin beetleTrox mitis (Coleoptera, Scarabaeidae). Kontyu 55:587–600

    Google Scholar 

  • Hallberg E (1977) The fine structure of the compound eyes of mysids (Crustacea, Mysidacea). Cell Tissue Res 184:45–65

    Article  CAS  PubMed  Google Scholar 

  • Hallberg E, Nilsson DE (1983) The euphausiid compound eye — a morphological re-investigation (Crustacea, Euphausiacea). Zoomorphology 103:59–66

    Article  Google Scholar 

  • Hardie RC, Duelli P (1978) Properties of single cells in posterior lateral eyes of jumping spiders. Z Naturforsch 33c:156–158

    Google Scholar 

  • Horridge GA (1969) Unit studies on the retina of dragonflies. Z Vergl Physiol 62:1–37

    Article  Google Scholar 

  • Horridge GA (1972) Further observations on the clear zone eye ofEphestia. Proc R Soc Lond B 181:157–173

    Google Scholar 

  • Horridge GA (1976) The ommatidium of the dorsal eye ofCloeon as a specialization for photoisomerization. Proc R Soc Lond B 193:17–29

    CAS  PubMed  Google Scholar 

  • Horridge GA, Duelli P (1979) Anatomy of the regional differences in the eye of the mantisCiulfina. J Exp Biol 80:165–190

    Google Scholar 

  • Horridge GA, Giddings C (1971a) Movement on dark-light adapta- tion in beetle eyes of the neuropteran type. Proc R Soc Lond B 179:73–85

    Google Scholar 

  • Horridge GA, Giddings C (1971b) The retina ofEphestia (Lepidop- tera). Proc R Soc Lond B 179:87–95

    Google Scholar 

  • Horridge GA, McLean M (1978) The dorsal eye of the mayflyAtalophlebia (Ephemeroptera). Proc R Soc Lond B 200:137–150

    Google Scholar 

  • Horridge GA, Giddings C, Stange G (1972) The superposition eye of skipper butterflies. Proc R Soc Lond B 182:457–495

    Google Scholar 

  • Horridge GA, McLean M, Stange G (1977) A diurnal moth super- position eye with high resolutionPhalaenoides tristifica (Agaris- tidae). Proc R Soc Lond B 196:233–250

    CAS  PubMed  Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R (1982) Light guides in the dorsal eye of the male mayfly. Proc R Soc Lond B 216:25- 51

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R (1983a) Retinula cell responses in a moth superposition eye. Proc R Soc Lond B 220:47–68

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R, McIntyre P (1983b) Daily changes in the compound eye of a beetle(Macrogyms). Proc R Soc Lond B 217:265–285

    Google Scholar 

  • Kampa EM (1963) The structure of the eye of a galatheid crus- tacean,Pleuroncodes planipes. Crustaceana 6:69–84

    Google Scholar 

  • Kirschfeld K (1974) The absolute sensitivity of lens and compound eyes. Z Naturforsch 29c:592–596

    CAS  Google Scholar 

  • Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol. VII/6A). Springer, Berlin Heidelberg, New York, pp 441–502

    Google Scholar 

  • Land MF (1969) Structure of the retinae of the principal eyes of jumping spiders (Salticidae, Dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470

    CAS  PubMed  Google Scholar 

  • Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106

    CAS  PubMed  Google Scholar 

  • Land MF (1978) Animal eyes with mirror optics. Sci Am 239:126–134

    Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol. VII/6B). Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol A 154:515–533

    Article  Google Scholar 

  • Land MF, Burton FA, Meyer-Rochow VB (1979) The optical geometry of euphausiid eyes. J Comp Physiol 130:49–62

    Google Scholar 

  • Loew RE (1976) Light, and photoreceptor degeneration in the Norway lobster,Nephrops norvegicus (L.). Proc R Soc Lond B 193:31–44

    CAS  PubMed  Google Scholar 

  • McIntyre P, Caveney S (1985) Graded-index optics are matched to optical geometry in the superposition eyes of scarab beetles. Phil Trans R Soc Lond B 311:237–269

    Google Scholar 

  • Meinecke CC (1981) The fine structure of the compound eye of the African armyworm moth,Spodoptera exempta Walk. (Lepidoptera, Noctuidae). Cell Tissue Res 216:333–347

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1973) The dioptric system of the eye ofCybister (Dytiscidae, Coleoptera). Proc R Soc Lond B 183:159–178

    CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1974) Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. J Insect Physiol 20:573–589

    CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1975) Larval and adult eye of the western rock lobster(Panulirus longipes). Cell Tissue Res 162:439–457

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Rochow VB (1978) Retina and dioptric apparatus of the dung beetleEuoniticellus africanus. J Insect Physiol 24:165–179

    Article  Google Scholar 

  • Meyer-Rochow VB, Horridge GA (1975) The eye ofAnoplognathus (Coleoptera, Scarabaeidae). Proc R Soc Lond B 188:1–30

    CAS  PubMed  Google Scholar 

  • Miskimen GW, Rodriguez NL (1981) Structure and functional aspects of the scotopic compound eye of the sugarcane borer moth. J Morphol 168:73–84

    Article  Google Scholar 

  • Nilsson DE (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 30–73

    Google Scholar 

  • Nilsson DE, Howard J (1989) Intensity and polarization of the eyeshine in butterflies. J Comp Physiol A 166:51–56

    Article  Google Scholar 

  • Nilsson DE, Nilsson HL (1981) A crustacean compound eye adapted for low light intensities (Isopoda). J Comp Physiol 143:503–510

    Google Scholar 

  • O'Carroll D (1989) An optical assessment of visual performance in the eyes of hunting spiders (Araneae, Labidognatha). PhD thesis, The Flinders University of South Australia, Australia

    Google Scholar 

  • Seitz G (1968) Der Strahlengang im Appositionsauge vonCalliphora erythrocephala (Meig.). Z Vergl Physiol 59:205–231

    Google Scholar 

  • Shimohigashi M, Tominaga Y (1986) The compound eye ofParnara guttata (Insecta, Lepidoptera, Hesperiidae): fine structure of the ommatidium. Zoomorphology 106:131–136

    Article  Google Scholar 

  • Tuurala O (1954) Histologische und physiologische Untersuchungen über die photomechanischen Erscheinungen in den Augen der Lepidopteren. Ann Acad Sci, Fenn Series A 24:1–69

    Google Scholar 

  • Varela FG, Wiitanen W (1970) The optics of the compound eye of the honeybee(Apis mellifera). J Gen Physiol 55:336–358

    Article  CAS  PubMed  Google Scholar 

  • Warrant EJ, McIntyre PD (1990) Limitations to resolution in superposition eyes. J Comp Physiol A 167:785–803

    Google Scholar 

  • Welsch B (1977) Ultrastruktur und functionelle Morphologie der Augen des NachtfaltersDeilephila elpenor (Lepidoptera, Sphingidae). Cytobiologie 14:378–400

    Google Scholar 

  • Williams DS (1982) Ommatidial structure in relation to photoreceptor membrane turnover in the locust. Cell Tissue Res 225:595–617

    Article  CAS  PubMed  Google Scholar 

  • Williams DS (1983) Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in the locust. J Comp Physiol 150:509–519

    Article  Google Scholar 

  • Williams DS, McIntyre PD (1980) The principal eyes of a jumping spider have a telephoto component. Nature 288:578–580

    Article  Google Scholar 

  • Wilson M, Garrard P, McGinness S (1978) The unit structure of the locust compound eye. Cell Tissue Res 195:205–226

    Article  CAS  PubMed  Google Scholar 

  • Yagi N, Koyama N (1963) The compound eye of Lepidoptera. Maruzen and Co. (agents for Shinkyo-Press and Co., Ltd.), Tokyo

    Google Scholar 

  • Zyznar ES (1970) The eyes of white shrimp,Penaeus setiferus (Linnaeus) with a note on the rock shrimp,Sicyonia brevirostris Stimpson. Contrib Mar Sci 15:87–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrant, E.J., McIntyre, P.D. Strategies for retinal design in arthropod eyes of low F-number. J Comp Physiol A 168, 499–512 (1991). https://doi.org/10.1007/BF00199610

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199610

Key words

Navigation