Skip to main content
Log in

Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

According to Hebb's postulate for learning, information presented to a neural net during a learning session is stored in the synaptic efficacies. Long-term potentiation occurs only if the postsynaptic neuron becomes active in a time window set up by the presynaptic one. We carefully interpret and mathematically implement the Hebb rule so as to handle both stationary and dynamic objects such as single patterns and cycles. Since the natural dynamics contains a rather broad distribution of delays, the key idea is to incorporate these delays in the learning session. As theory and numerical simulation show, the resulting procedure is surprisingly robust and faithful. It also turns out that pure Hebbian learning is by selection: the network produces synaptic representations that are selected according to their resonance with the input percepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit DJ (1987) Neural networks counting chimes. RIP Preprint RI/87/49

  • Amit DJ, Gutfreund H, Sompolinsky H (1985) Spin-glass models of neural networks. Phys Rev A 32:1007–1018

    Google Scholar 

  • Amit DJ, Gutfreund H, Sompolinsky H (1987) Statistical mechanics of neural networks near saturation. Ann Phys (NY) 173:30–67

    Google Scholar 

  • Bös S (1988) Neuronales Netzwerk mit hierarchisch strukturierter Information. Diplomarbeit, Universität Heidelberg

    Google Scholar 

  • Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? In: Fox CA, Snider RS (eds) The cerebellum. Progress in Brain Research, vol 25. Elsevier, Amsterdam, pp 334–346

    Google Scholar 

  • Braitenberg V (1974) On the representation of objects and their relation in the brain. In: Conrad M, Güttinger W, Dal Cin M (eds) Lecture Notes in Biomathematics, vol 4. Springer, Berlin Heidelberg New York, pp 290–298

    Google Scholar 

  • Braitenberg V (1986) Two views of the cerebral cortex. In: Palm G, Aertsen A (eds) Brain theory. Springer, Berlin Heidelberg New York, pp 81–96

    Google Scholar 

  • Buhmann J (1985) Mustererkennung in selbstorganisierenden, neuronalen Netzwerken. Diplomarbeit. Technische Universität München

    Google Scholar 

  • Buhmann J, Schulten K (1987) Noise-driven temporal association in neural networks. Europhys Lett 4:1205–1209

    Google Scholar 

  • Caianiello ER (1961) Outline of a theory of thought processes and thinking machines. J Theor Biol 1:204–235

    Google Scholar 

  • Coolen ACC, Gielen CCAM (1988) Delays in neural networks. Europhys Lett 7:281–285

    Google Scholar 

  • Dehaene S, Changeux J-P, Nadal J-P (1987) Neural networks that learn temporal sequences by selection. Proc Natl Acad Sci USA 84:2727–2731

    Google Scholar 

  • Feigel'man MV, Ioffe LB (1987) The augmented models of associative memory: asymmetric interaction and hierarchy of patterns. Int J Mod Phys 1:51–68

    Google Scholar 

  • Fukushima K (1973) A model of associative memory in the brain. Kybernetik 12:58–63

    Google Scholar 

  • Grensing D, Kühn R (1986) Random-site spin glass models. J Phys A 19:L1153–1157

    Google Scholar 

  • Grossberg S (1968) Prediction theory for some nonlinear functional differential equations I. Learning of lists. J Math Anal Appl 21:643–694

    Google Scholar 

  • Gustafsson B, Wigström H, Abraham WS, Huang Y-Y (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7:774–780

    Google Scholar 

  • Gutfreund H, Mézard M (1988) Processing of temporal sequences in neural networks. Phys Rev Lett 61:235–238

    Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hemmen JL van (1987) Nonlinear neural networks near saturation. Phys Rev A 36:1959–1962

    Google Scholar 

  • Hemmen JL van, Kühn R (1986) Nonlinear neural networks. Phys Rev Lett 57:913–916

    Google Scholar 

  • Hemmen JL van, Grensing D, Huber A, Kühn R (1986) Elementary solution of classical spin-glass models. Z Phys B-Condensed Matter 65:53–63

    Google Scholar 

  • Hemmen JL van, Grensing D, Huber A, Kühn R (1988a) Nonlinear neural networks I. General theory; II. Information processing. J Stat Phys 50:231–257; 259–293

    Google Scholar 

  • Hemmen JL van, Keller G, Kühn R (1988b) Forgetful memories. Europhys Lett 5:663–668

    Google Scholar 

  • Herz A (1989) Representation and recognition of spatiotemporal objects within a generalized Hopfield scheme. Proc Connectionism in Perspective (Zürich): (to be published)

  • Herz A, Sulzer B, Kühn R, Hemmen JL van (1988) Hebbian learning — a canonical way of representing static and dynamic objects in an associative network. Proc nEuro '88 (Paris): (to be published)

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Google Scholar 

  • Kelso SR, Ganong AH, Brown TH (1986) Hebbian synapses in hippocampus. Proc Natl Acad Sci USA 83:5326–5330

    Google Scholar 

  • Kerszberg M, Zippelius A (1988) Synchronization in neural assemblies. Preprint

  • Kleinfeld D (1986) Sequential state generation by model neural networks. Proc Natl Acad Sci USA 83:9469–9473

    Google Scholar 

  • Lamperti J (1966) Probability. Benjamin, New York. For non-random patterns one simply requires that p N(y) converge to a limit p(y)

    Google Scholar 

  • Lee KH, Chung K, Chung JM, Coggeshall RE (1986) Correlation of cell body size, axon size, and signal conduction velocity for individually labelled dorsal root ganglion cells in the cat. J Comp Neurol 243:335–346

    Google Scholar 

  • Little WA (1974) The existence of persistent states in the brain. Math Biosci 19:101–120

    Google Scholar 

  • Little WA, Shaw GL (1978) Analytic study of the memory storage capacity of a neural network. Math Biosci 39:281–290

    Google Scholar 

  • McCulloch WC, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Google Scholar 

  • Malinow R, Miller JP (1986) Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320:529–530

    Google Scholar 

  • Miller R (1987) Representation of brief temporal patterns, Hebbian synapses, and the left-hemisphere dominance for phoneme recognition. Psychobiology 15:241–247

    Google Scholar 

  • Nadal J-P, Toulouse G, Changeux J-P, Dehaene S (1986) Networks of formal neurons and memory palimpsests. Europhys Lett 1:535–542

    Google Scholar 

  • Parisi G (1986) A memory which forgets. J Phys A: Math Gen 19:L617–620

    Google Scholar 

  • Peretto P, Niez JJ (1986) Collective properties of neural networks. In: Bienenstock E, Fogelman-Soulié F, Weisbuch G (eds) Disordered systems and biological organization. Springer, Berlin Heidelberg New York, pp 171–185

    Google Scholar 

  • Riedel U, Kühn R, Hemmen JL van (1988) Temporal sequences and chaos in neural nets. Phys Rev A 38:1105–1108

    Google Scholar 

  • Scott AC (1977) Neurophysics. Wiley, New York

    Google Scholar 

  • Sompolinsky H, Kanter L (1986) Temporal association in asymmetric neural networks. Phys Rev Lett 57:2861–2864

    Google Scholar 

  • Toulouse G, Dehaene S, Changeux J-P (1986) A spin-glass model of learning by selection. Proc Natl Acad Sci USA 83:1695–1698

    Google Scholar 

  • Willwacher G (1976) Fähigkeiten eines assoziativen Speicher-systems im Vergleich zu Gehirnfunktionen. Biol Cybern 24:181–198

    Google Scholar 

  • Willwacher G (1982) Storage of a temporal pattern sequence in a network. Biol Cybern 43:115–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herz, A., Sulzer, B., Kühn, R. et al. Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets. Biol. Cybern. 60, 457–467 (1989). https://doi.org/10.1007/BF00204701

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204701

Keywords

Navigation