Skip to main content
Log in

Crystal chemistry of a natural schorlomite and Ti-andradites synthesized at different oxygen fugacities

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Ti-andradites were synthesized at a pressure of P(H2O)=3 kbar and temperatures of 700–800° C. Oxygen fugacities were controlled by solid state buffers (Ni/NiO; SiO2 + Fe/Fe2SiO4). The Fe2+-and Fe3+-distribution was determined by low temperature Mössbauer spectroscopy. The water content was measured by a solid's moisture analyzer. The chemical composition of the synthetic and the natural sample has been determined by electron microprobe. Ti-andradites from runs at high oxygen fugacities have Fe3+ on octahedral and tetrahedral sites; Ti-andradites from runs at low oxygen fugacities have tetrahedrally and octahedrally coordinated Fe2+ as well. These “reduced” garnets must also contain Ti3+ on octahedral sites. Charge balance is maintained due to substitution of O2− by (OH) by two mechanisms: (SiO4)4− ⇌ (O4H4)4− and (Fe3+O6)9− ⇌ (Fe2+O5OH)9−. FTIR spectra of the synthetic samples do show the presence of structurally bound (OH). In a natural sample tetrahedrally and octahedrally coordinated Fe3+ are observed together with Fe2+ on all three cation sites of the garnet structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Aines RD, Rossman GR (1984) The hydrous component in garnets: pyralspites. Am Mineral 69:1116–1126

    Google Scholar 

  • Amthauer G, Annersten H, Hafner SS (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Z Kristallogr 143:14–55

    Google Scholar 

  • Amthauer G, Annersten H, Hafner SS (1977) The Mössbauer spectrum of 57Fe in titanium-bearing andradites. Phys Chem Minerals 1:399–413

    Article  Google Scholar 

  • Amthauer G, Rossman GR (1984) Mixed valence of iron in minerals with cation clusters. Phys Chem Minerals 11:37–51

    Article  Google Scholar 

  • Basso R, Cimmino F, Messiga B (1984) Crystal chemistry of hydrogarnets from three different microstructural sites of a basaltic metarodingite from the Voltri Massif (Western Liguria, Italy). Neues Jahrb Mineral Geol Paleontol Abh 148:246–258

    Google Scholar 

  • Bi Y, Mu B, Zhang Z, Shao M (1983) The crystal structure of schorlomite and the structural distribution of titanium atoms. Acta Mineral Sin 4:265–270

    Google Scholar 

  • Burns RG (1972) Mixed valencies and site occupancies of iron in silicate minerals from Mössbauer spectroscopy. Can J Spectrosc 17:51–59

    Google Scholar 

  • Cohen-Addad C, Ducros P, Bertaut EF (1967) Etude de la substitution du groupement SiO4 par (OH)4 dans les composes Al2Ca3(OH)12 et Al2Ca3(SiO4)2,16(OH)3,36 de type grenat. Acta Crystallogr 23:220–230

    Article  Google Scholar 

  • Dowty E (1971) Crystal chemistry of titanian and zirconian garnet: I. Review and spectral studies. Am Mineral 56:1983–2009

    Google Scholar 

  • Eugster HP, Wones DR (1962) Stability relations of the ferruginous biotite, annite. J Petrol 3:82–125

    Google Scholar 

  • Gongbao W, Baolei M (1986) The crystal chemistry and Mössbauer study of schorlomite. Phys Chem Minerals 13:198–205

    Article  Google Scholar 

  • Howie RA, Woolley AR (1968) The role of titanium and the effect of TiO2 on the cell-size, refractive index, and specific gravity in the andradite-melanite-schorlomite series. Mineral Mag 36:775–790

    Google Scholar 

  • Huckenholz HG (1969) Synthesis and stability of Ti-andradite. Am J Sci Schairer 267-A:209–232

    Google Scholar 

  • Huckenholz HG, Hölzl E, Huggins FE, Virgo D (1976) A reconnaissance study of the Ti-garnet stability field at defined oxygen fugacities. Carnegie Inst Washington Yearb 75:711–720

    Google Scholar 

  • Huckenholz HG, Fehr KT (1982) Stability relationships of grossular + quartz + wollastonite + anorthite. II. The effect of granditehydrograndite solid solution. Neues Jahrb Mineral Geol Paleontol Abh 145:1–33

    Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1977a) Titanium-containing silicate garnets. I. The distribution of Al, Fe3+, and Ti4+ between octahedral and tetrahedral sites. Am Mineral 62:475–490

    Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1977b) Titanium-containing silicate garnets. II. The crystal chemistry of melanites and schorlomites. Am Mineral 62:646–665

    Google Scholar 

  • Ito J, Hafner SS (1974) Synthesis and Study of Gadolinites. Am Mineral 59:700–708

    Google Scholar 

  • Koritnig S, Rösch H, Schneider A, Seifert F (1978) Der TitanZirkon-Granat aus den Kalksilikatfels-Einschlüssen des Gabbro im Radautal, Harz, BRD. TMPM Tschermaks Mineral Petrogr Mitt 25:305–313

    Google Scholar 

  • Lager GA, Armbruster Th, Faber J (1987) Neutron and X-ray diffraction study of hydrogarnet Ca3Al2(O4H4)3. Am Mineral 72:756–765

    Google Scholar 

  • Loeffler BM, Burns RG, Tossell JA (1975) Metal-metal charge transfer transitions: Interpretations of visible region spectra of the moon and lunar materials. Proc 6th Lunar Sci Conf 3:2663–2676

    Google Scholar 

  • Luth WC, Tuttle OF (1963) Externally heated cold seal pressure vessels for use to 10.000 bars and 750° C. Am Mineral 48:1401–1403

    Google Scholar 

  • Manning PG, Harris DC (1970) Optical-absorption and electronmicroprobe studies of some high-Ti andradites. Can Mineral 10:260–271

    Google Scholar 

  • Moore RK, White WB (1971) Intervalence electron transfer effects in the spectra of the melanite garnets. Am Mineral 56:826–840

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Regnard JR (1976) Mössbauer study of natural crystals of staurolite. J Phys (Paris) 37:C6 797–800

    Google Scholar 

  • Schwartz KB, Nolet DA, Burns RG (1980) Mössbauer spectroscopy and crystal chemistry of natural Fe-Ti garnets. Am Mineral 65:142–153

    Google Scholar 

  • Seifert F, Federico M (1987) 57Fe Mössbauer spectroscopy of natural melilites. Rend Soc Ital Mineral Petrol 42:3–11

    Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925–946

    Article  Google Scholar 

  • Smith JV (1953) Reexamination of the crystal structure of melilite. Am Mineral 38:643–661

    Google Scholar 

  • Smith JV (1968) The crystal structure of staurolite. Am Mineral 53:1139–1155

    Google Scholar 

  • Tarte P (1960) Infrared spectra of garnets. Nature 186:234

    Google Scholar 

  • Tarte P (1965) Etude experimentale et interprétation du spectre infrarouge des silicates et des germanates. Application à des problèmes structuraux relatifs à l'état solide. Acad R Belg Cl Sci Mem 35:N 4a, 4b 260p, N 4b, 134p

  • Weber HP, Virgo D Huggins FE (1975) A neutron-diffraction and 57Fe Mössbauer study of a synthetic Ti-rich garnet. Carnegie Inst Washington Yearb 74:575–577

    Google Scholar 

  • Whipple ER (1973) Quantitative Mössbauer spectra and chemistry of iron. Ph.D.thesis, Massachusetts Institute of Technology Cambridge Massachusetts

    Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of some nominally anhydrous silicates. Am Mineral 58:508–516

    Google Scholar 

  • Yoder HS Jr (1950) High-low quartz inversion up to 10.000 bars. Trans Am Geophys Union 31:827–835

    Google Scholar 

  • Zedlitz O (1933) Über titanreichen Kalkeisengranat. Zentralbl Mineral Geol Paläontol Abt A Mineral Petrogr 225/2-239

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühberger, A., Fehr, T., Huckenholz, H.G. et al. Crystal chemistry of a natural schorlomite and Ti-andradites synthesized at different oxygen fugacities. Phys Chem Minerals 16, 734–740 (1989). https://doi.org/10.1007/BF00209694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209694

Keywords

Navigation