Skip to main content
Log in

Electronic contributions to sliding friction

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Two experimental approaches for determining the relative contributions of electronic and phononic dissipative mechanisms in sliding friction are discussed. The first involves comparison of electrical resistivity data with that recorded via a quartz crystal microbalance (QCM) technique. The second involves QCM studies of friction levels on clean and precoated metal surfaces. The first technique has been employed to study friction levels in the system H2O/Ag, and the second technique has been employed to study the systems Ar/Ag and Ar/Xe/Ag. We conclude that electronic contributions to friction, long thought to be negligible with respect to phonon contributions, remain very viable as a significant source of energy dissipation. While the resistivity approach may ultimately yield accurate measurements of the electronic contributions to friction, we expect its use to be limited. Surface precoating experiments are meanwhile expected to be of widespread applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Slippery When Dry”, Discover Magazine 15, December (1994) 18.

  2. I.L. Singer and H.M. Pollock, eds., Fundamentals of Friction: Macroscopic and Microscopic Processes (Kluwer, Dordrecht, 1992).

    Google Scholar 

  3. J. Krim, D.H. Solina and R. Chiarello, Phys. Rev. Lett. 66 (1991) 181.

    Google Scholar 

  4. J.F. Belak, MRS Bulletin XVIII, May (1993).

  5. I.L. Singer, J. Vac. Sci. Technol. A 12 (1994) 2605.

    Google Scholar 

  6. G. Amontons, Mem. Acad. Roy. Sci. 206 (1699).

  7. J.A. Greenwood, in: Fundamentals of Friction: Macroscopic and Microscopic Processes, eds. I.L. Singer and H.M. Pollock (Kluwer, Dordrecht, 1992).

    Google Scholar 

  8. G.A. Tomlinson, Phil. Mag. S7 (1929) 905.

    Google Scholar 

  9. B.N.J. Persson, Phys. Rev. B 44 (1991) 3277.

    Google Scholar 

  10. C. Mak, C. Daly and J. Krim, Thin Solid Films 253 (1994) 190.

    Google Scholar 

  11. R.B. Grant and R.M. Lambert, Surf. Sci. 146 (1984) 256; C.T. Campbell, Surf. Sci. 157 (1985) 43.

    Google Scholar 

  12. C. Lu and A. Czanderna, eds., Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, Amsterdam, 1984).

    Google Scholar 

  13. J. Krim and A. Widom, Phys. Rev. B 38 (1988) 12184; A. Widom and J. Krim, Phys. Rev. B 34 (1986) R3.

    Google Scholar 

  14. E.T. Watts, J. Krim and A. Widom, Phys. Rev. B 41 (1990) 3466.

    Google Scholar 

  15. J.B. Sokoloff, J. Krim and A. Widom, Phys. Rev. B 48 (1993) 9134.

    Google Scholar 

  16. G. Palasantzas and J. Krim, Phys. Rev. Lett. 73 (1994) 3564.

    Google Scholar 

  17. J. Krim, E.T. Watts and J. Digel, J. Vac. Sci. Technol. 8 (1990) 3417.

    Google Scholar 

  18. D. Schumacher, Habilitationsschrift, Universität Düsseldorf, Germany (1990).

    Google Scholar 

  19. M.W. Cole, private communication.

  20. M. Cieplak, E.D. Smith and M.O. Robbins, Science 265 (1994) 1209.

    Google Scholar 

  21. G.J. Germann, S.R. Cohen, G. Neubauer, G.M. McClelland, H. Seki and D. Coulman, J. Appl. Phys. 73 (1993) 163.

    Google Scholar 

  22. J. Krim, Comments Condens. Matter Phys., submitted.

  23. L. Howald, R. Luthi, E. Meyer, G. Gerth, H. Haefke, R. Overney and H.-J. Guntherodt, J. Vac. Sci. Technol. B 12 (1994) 2227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krim, J., Daly, C. & Dayo, A. Electronic contributions to sliding friction. Tribol Lett 1, 211–218 (1995). https://doi.org/10.1007/BF00209775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209775

Keywords

Navigation