Skip to main content
Log in

Marine biosurfactants. IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1

  • Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

During screening for biosurfactants among marine, n-alkane-utilizing bacteria, low- and high-molecular surface-active substances were detected. The marine bacterial strain MM1 was found to synthesize a novel glycolipid that has not so far been cited in the literature. Both 1H, 13C-nuclear magnetic resonance spectroscopic and positive ion fast atom bombardment mass spectrometer studies led to the identification of a glucose lipid consisting of four 3-OH-decanoic acids, which are linked together by ester bonds. The lipophilic moiety is coupled glycosidically with C-1 of glucose. The glucolipid reduced the surface tension from 72 mN/m to 30 mN/m while the minimum interfacial tension towards n-hexadecane was lowered to values smaller than 5 mN/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baginsky ES, Foa PP, Zak B (1967) Glucose-6-phosphatase. Anal Biochem 21:909–913

    Google Scholar 

  • Barnes EM, Swindell AC, Wakil SJ (1970) Purifications and properties of a palmityl thioesterase II from E. coli. J Biol Chem 245:3122–3128

    Google Scholar 

  • Beilsteins Handbuch der Organischen Chemie (1977), 4. Ergänzungswerk, vol. 3 (editor: Beilstein-Institut für Literatur der Organischen Chemie, Frankfurt/Main, FRG). Springer, Berlin Heidelberg New York, pp 873–894

    Google Scholar 

  • Bernem KH van (1984) Experimentelle Untersuchungen zur Wirkung von Rohöl und Rohöl-Tensidgemischen im Ökosystem Wattenmeer. II. Eindringverhalten und Persistenz von Rohöl-KWS in Sedimenten nach experimenteller Kontamination. Senkenb Marit 16:13–30

    CAS  PubMed  Google Scholar 

  • Blecher M (1981) Synthesis of long chain fatty acyl CoA thioesters using N-hydroxysuccinimide esters. Methods Enzymol 72:403–407

    Google Scholar 

  • Boyce SG, Lueking DR (1984) Purification and characterization of a long chain acyl CoA thioesterase from Rhodopseudomonas sphaeroides. Biochemistry 23:141–147

    Google Scholar 

  • Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595–2601

    Google Scholar 

  • Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48:747–750

    Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:72–77

    Google Scholar 

  • Frautz B, Lang S, Wagner F (1986) Formation of cellobiose lipids by growing and resting cells of Ustilago maydis. Biotechnol Lett 8:757–762

    Google Scholar 

  • Gutnik DL, Bayer EA, Rubinowitz C, Pines O, Shabtai Y, Goldmann S, Rosenberg E (1981) Emulsan production in Acinetbacter RAG-1. Adv Biotechnol 3:455–459

    Google Scholar 

  • Haferburg D, Hommel R, Claus R, Kleber HP (1986) Extracellular microbial lipids as biosurfactants. Adv Biochem Eng Biotechnol 33:53–93

    Google Scholar 

  • Hauser G, Karnovsky ML (1957) Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa. J Biol Chem 229:91–105

    Google Scholar 

  • Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692

    Google Scholar 

  • Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:2233–2235

    Google Scholar 

  • Kosaric N, Cairns WL, Gray NCC (eds) (1987) Biosurfactants and biotechnology. Surfactant science series, vol 25. Dekker, New York

    Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870

    Google Scholar 

  • Passeri A, Lang S, Wagner F, Wray V (1991) Marine biosurfactants. II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK1. Z Naturforsch 46c:204–209

    Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1989) Mikrobieller Ölabbau im Meer. Biol Unserer Zeit 5:145–148

    Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1991) Marine biosurfactants. III. Toxicity testing with marine microorganisms and comparison with synthetic detergents. Z Naturforsch 46c:210–216

    Google Scholar 

  • Rosen OM, Rosen SM, Horecker BL (1966) Fructose-1,6-diphosphatase. Methods Enzymol 9:632–636

    Google Scholar 

  • Schulz D, Passeri A, Schmidt M, Lang S, Wagner F, Wray V, Gunkel W (1991) Marine biosurfactants. I. Screening for biosurfactants among crude oil degrading marine microorganism from the North Sea. Z Naturforsch 46c:197–203

    Google Scholar 

  • Seay T, Lueking DR (1986) Purification and properties of acyl coenzyme A thioesterase II from Rhodopseudomonas sphaeroides. Biochemistry 25:2480–2485

    Google Scholar 

  • Seubert W, Weicker H (1969) Pyruvate carboxylase from Pseudomonas. Methods Enzymol 13:258–262

    Google Scholar 

  • Smith J (ed) (1968) Torrey Canyon — pollution and marine life. Report by the Plymouth Laboratory of the Marine Biological Association of the United Kingdom, London. Cambridge University Press, London, pp 1906

    Google Scholar 

  • Smith S, Mikkelsen J, Witkowski A, Libertini LJ (1986) Thioesterase II: structure-function relationships. Biochem Soc Trans 14:583–584

    PubMed  Google Scholar 

  • Syldatk C, Matulovic U, Wagner F (1984) Biotenside — Neue Verfahren zur mikrobiellen Herstellung grenzflächenaktiver, anionischer Glykolipide. Biotechforum (BTF) 3/4:58–66

    Google Scholar 

  • Takeshima H, Kitao C, Omura S (1977) Inhibition of the biosynthesis of leucomycin by cerulenin. J Biochem 81:1127–1132

    Google Scholar 

  • Thijsse GJE (1964) Fatty acid accumulation by acrylate inhibition in an alkane oxidizing Pseudomonas. Biochem Biophys Acta 84:195–197

    Google Scholar 

  • Volpe JV, Vagelos PR (1973) Saturated fatty acid biosynthesis and its regulation. Annu Rev Biochem 42:21–60

    Google Scholar 

  • Wagner F (1987) Strategies for biosurfactant production. Fat Sci Technol 89:586–591

    Google Scholar 

  • Wood HG, Davis JJ, Willard JM (1969) Phosphoenolpyruvate carboxytransphosphorylase from Propionibacterium shermanii. Methods Enzymol 13:357–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: S. Lang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passeri, A., Schmidt, M., Haffner, T. et al. Marine biosurfactants. IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl Microbiol Biotechnol 37, 281–286 (1992). https://doi.org/10.1007/BF00210978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00210978

Keywords

Navigation