Skip to main content
Log in

Dislocation dissociation in CaGeO3 perovskite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Dissociated dislocations have been observed for the first time by transmission electron microscopy in the perovskite-structure compound CaGeO3. Dislocations with Burgers vectors \(\left[ {1\bar 10} \right]\) and [001] (in pseudo-cubic index) are dissociated into collinear partials on the (110) plane:

$$\left[ {1\bar 10} \right] = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right] + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left[ {1\bar 10} \right]$$

and [001] = 1/2[001] + 1/2[001]. The partials react to form octagonal extended nodes. The stacking fault ribbons with displacement vector \(\left[ {1\bar 10} \right]\) have a width of 350 A, which corresponds to a stacking fault energy of 35 erg/cm2 (or mJ/m2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DJ, Bass JD (1986) Transition region of the Earth's mantle. Nature 320:321–328

    Google Scholar 

  • Beauchesne S, Poirier JP (1989) Creep of barium titanate perovskite: a contribution to a systematics approach of the viscosity of the lower mantle. Phys Earth Planet Int 55:187–199

    Google Scholar 

  • Cherns D, Hutchison JL, Jenkins ML, Hirsch PB, White S (1980) Electron irradiation induced vitrification at dislocations in quartz. Nature 287:314–316

    Google Scholar 

  • Doukhan N, Doukhan JC (1986) Dislocations in perovskites BaTiO3 and CaTiO3. Phys Cem Minerals 13:403–410

    Google Scholar 

  • Hirth JP, Lothe J (1982) Theory of dislocations. 2nd Edn. John-Wiley, New York

    Google Scholar 

  • Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: Single-crystal X-ray diffraction study. Am Mineral 72:357–360

    Google Scholar 

  • Ingrin J and Liebermann RC (1989) Deviatoric stress in a girdleanvil type high-pressure apparatus: Effect on the quartz-coesite phase transformation. Phys Earth Planet Int 54:378–385

    Google Scholar 

  • Kanzaki M (1986) Melting experiments of CaGeO3, In: The 27th High-pressure Conference of Japan Oct. 13–15, Sappora, pp 184–185

  • Liebermann RC, Jones LE, Ringwood AE (1977) Elasticity of aluminate, titanate, stanate and germanate compounds with the perovskite structure. Phys Earth Planet Int 11:289–298

    Google Scholar 

  • Madon M, Gyot F, Peyronneau J, Poirier JP (1988) Electron microscopy of high-pressure phases synthesized from natural olivine in diamond anvil cell. Phys Chem Minerals, submitted

  • Poirier JP, Peyronneau J, Gesland JY, Brebec G (1983) Viscosity and conductivity of the lower mantle: an experimental study on a MgSiO3 perovskite analogue, KZnF3. Phys Earth Planet Int 32:273–287

    Google Scholar 

  • Poirier JP, Beauchesne S, Guyot F (1987) Deformation mechanisms of crystals with perovskite structure. Chapman Conference on Perovskites, Oct. 30–Nov. 2, Bisbee, Arizona

  • Remsberg AR, Boland JN, Gasparik T, Liebermann RC (1988) Mechanism of the olivine-spinel transformation in Co2SiO4. Phys Chem Minerals 15:498–506

    Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the crystal chemistry of the GdFeO3-type perovskites. Am Mineral 68:1189–1198

    Google Scholar 

  • Sawamoto H (1987) Phase diagram of MgSiO3 at pressures upto 24 GPa and temperatures up to 2200° C: phase stability and properties of tetragonal garnet. In: Manghnani MH, Syono Y (eds) Hihg-pressure research in mineral physics. AGU, Washington DC, pp 209–219

    Google Scholar 

  • Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnetperovskite transformation in CaGeO3: in-situ X-ray measurements using synchrotron radiation. Geophys Res Lett 12:729–732

    Google Scholar 

  • Wang Y, Liebermann RC, Boland JN (1988) Olivine as an in situ piezometer in high pressure apparatus. Phys Chem Minerals 15:493–497

    Google Scholar 

  • Weidner DJ, Ito E (1987) Mineral physics constraints on a uniform mantle composition. In: Manghnani MH, Syono Y (eds) High-Pressure Research in Mineral Physics. AGU, Washington, DC, pp 439–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Poirier, JP. & Liebermann, R.C. Dislocation dissociation in CaGeO3 perovskite. Phys Chem Minerals 16, 630–633 (1989). https://doi.org/10.1007/BF00223310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00223310

Keywords

Navigation