Skip to main content
Log in

Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Both Alcaligenes eutrophus JMP 134 and its plasmid-free derivative Alcaligenes eutrophus JMP 222 utilize 2,6-dinitrophenol as sole source of carbon, energy, and nitrogen. In the presence of ammonia resting cells of these strains release two mol of nitrite per mol of 2,6-dinitrophenol. Alcaligenes eutrophus JMP 222-α1D, a mutant of strain JMP 222 obtained by transposon (Tn5) mutagenesis, is able to use 2,6-dinitrophenol as nitrogen source but not as source of carbon and energy. Resting cells of this mutant liberate only one mol of nitrite per mol of 2,6-dinitrophenol. A single metabolite was detected by high-pressure liquid chromatography and identified as 2-hydroxy-5-nitropenta-2,4-dienoic acid from the mass spectrum, the 1H-, and 13C-NMR spectra. Strain JMP 222-α1S, a spontaneous mutant of strain JMP 222-α1D, accumulates 4-nitropyrogallol which was identified as the initial metabolite of 2,6-dinitrophenol degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

2,6-DNP:

2,6-dinitrophenol

HNMA:

2-hydroxy-5-nitromuconic acid

HNPA:

2-hydroxy-5-nitropenta-2,4-dienoic acid

NB:

nutrient broth

NMR:

nuclear magnetic resonance

NPG:

4-nitropyrogallol

O.D.:

optical density

tR :

retention time

UV/Vis:

ultraviolet/visible

References

  • Bruhn C, Lenke H, Knackmuss H-J (1987) Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol 53: 208–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99: 61–70

    Article  Google Scholar 

  • Einhorn A, Cobliner J, Pfeiffer H (1904) Über das Pyrogallol. Chem Ber 37: 113–114

    Article  Google Scholar 

  • Germanier F, Wuhrmann K (1963) Über den aeroben mikrobiellen Abbau aromatischer Nitroverbindungen. Pathol Microbiol 26: 569–578

    CAS  Google Scholar 

  • Grosjean D (1985) Reactions of o-cresol and nitrocresol with NOx in sunlight and with ozone-nitrogen dioxide mixtures in the dark. Environ Sci Technol 19: 968–974

    Article  CAS  Google Scholar 

  • Gundersen K, Jensen HL (1956) A soil bacterium decomposing organic nitro-compounds. Acta Agric Scand 6: 100–114

    Article  CAS  Google Scholar 

  • Hallas LE, Alexander M (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl Environ Microbiol 45: 1234–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess TF, Schmidt SK, Silverstein J, Howe B (1990) Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl Environ Microbiol 56: 1551–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen HL, Lautrup-Larsen G (1967) Microorganisms that decompose nitroaromatic compounds with special reference to dinitroortho-cresol. Acta Agricol Scand 17: 115–126

    Article  CAS  Google Scholar 

  • Kearney PC, Kaufman DD (1975) Herbicides chemistry, degradation and mode of action. Marcel Dekker, New York

    Google Scholar 

  • Montgomery HAC, Dymock JF (1961) The determination of nitrite in water. Analyst 86: 414–416

    CAS  Google Scholar 

  • Murray NE, Brammar WJ, Murray K (1977) Lamboid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet 150: 53–61

    Article  CAS  Google Scholar 

  • Pemberton JM, Corney B, Don RH (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commerical importance. Elsevier/North Holland Biomedical Press, Amsterdam, pp 287–299

    Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55: 245–256

    Article  CAS  Google Scholar 

  • Schmidt SK, Gier MJ (1989) Dynamics of microbial populations in soil: Indigenous microorganisms degrading 2,4-dinitrophenol. Microbiol Ecol 18: 285–296

    Article  CAS  Google Scholar 

  • Simpson JR, Evans WC (1953) The metabolism of nitrophenols by certain bacteria. Biochem J 55: XXIV

    CAS  PubMed  Google Scholar 

  • Spain JC, Wyss O, Gibson DT (1979) Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun 88: 634–641

    Article  CAS  Google Scholar 

  • Tewfik MS, Evans WC (1966) DNOC-metabolism. Biochem J 99: 31P

  • Zeyer J, Kearney PC (1984) Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J Agric Food Chem 32: 238–242

    Article  CAS  Google Scholar 

  • Zeyer J, Kocher HP, Timmis KN (1986) Influence of parasubstituents on the oxidative metabolism of o-nitrophenols by Pseudomonas putida B2. Appl Environ Microbiol 52: 334–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeyer J, Kocher HP (1988) Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J Bacteriol 170: 1789–1794

    Article  CAS  Google Scholar 

  • Zoeteman BCJ, Harmsen K, Linders JBHJ, Morra CFH, Slooff W (1980) Persistent organic pollutants in river water and ground water of the Netherlands. Chemosphere 9: 231–249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecker, S., Widmann, T., Lenke, H. et al. Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Arch. Microbiol. 158, 149–154 (1992). https://doi.org/10.1007/BF00245219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245219

Key words

Navigation