Skip to main content
Log in

Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The strictly anaerobic, fermenting bacterium Pelobacter acidigallici degrades several trihydroxybenzene derivatives to stoichiometric amounts of acetate. We now report on the enzymatic activities in cell extracts which are responsible for the fermentative degradation of these aromatic compounds, and postulate a novel phloroglucinol pathway involving triacetic acid as an unusual metabolic intermediate. Gallate is decarboxylated to pyrogallol by a specific, Mg2+-dependent, soluble enzyme activity, followed by conversion of pyrogallol to phloroglucinol, involving an unusual intermolecular transhydroxylation described previously. Phloroglucinol is then reduced to dihydrophloroglucinol (5-hydroxy-1,3-cyclohexanedione) by an NADPH-dependent phloroglucinol reductase. Dihydrophloroglucinol is cleaved hydrolytically to 3-hydroxy-5-oxohexanoic acid, which is then oxidized to triacetic acid (3,5-dioxohexanoic acid) by a unique, NADP+-dependent dehydrogenase. Triacetic acid is activated by CoA transfer from acetyl-CoA, and then converted to 3 acetyl-CoA by two subsequent β-ketothiolase reactions. ATP is generated via phosphotransacetylase and acetate kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CoA:

coenzyme A

CTAB:

cetyltrimethylammonium bromide

DTT:

1,4-dithiothreitol

HOHA:

3-hydroxy-5-oxohexanoic acid

HPLC:

high performance liquid chromatography

TAA:

triacetic acid (3,5-dioxohexanoic acid)

Tris:

tris-(hydrocymethyl)-aminomethane

References

  • Batelaan JG (1976) A convenient synthesis of triacetic acid methyl ester. Synthetic Commun 6: 81–83

    CAS  Google Scholar 

  • Bergmeyer HU, Gawehn K, Graßl M (1974) Acetat-Kinase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn, vol I. Verlag Chemie, Weinheim, pp 454–455

    Google Scholar 

  • Blackwood AC, Hang YD, Robern H, Mathur DK (1970) Reductive pathway for the degradation of phloroglucinol by a pseudomonad. Bacteriol Proc 70: 124

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Brock DJH, Williamson DH (1968) Purification of a diketo acid hydrolase from rat liver and its use for the enzymic determination of 3,5-dioxohexanoate (triacetate) Biochem J 110: 677–682

    CAS  PubMed  Google Scholar 

  • Brock DJH, Williamson DH (1985) Triacetate and fumarylacetoacetate. In: Bergmeyer HU (ed) Methods in enzymatic analysis, 3rd edn vol 8. Verlag Chemie, Weinheim, pp 69–73

    Google Scholar 

  • Brune A, Schink B (1990a) Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici. J Bacteriol 172: 1070–1076

    CAS  PubMed  Google Scholar 

  • Brune A, Schink B (1990b) A complete citric acid cycle in assimilatory metabolism of Pelobacter acidigallici, a strictly anaerobic, fermenting bacterium. Arch Microbiol 154: 394–399

    Article  CAS  Google Scholar 

  • Brune A, Schnell S, Schink B (1992) Sequential transhydroxylations converting hydroxyhydroquinone to phloroglucinol in the strictly anaerobic, fermenting bacterium, Pelobacter massiliensis. Appl Environ Microbiol (in press)

  • Davey JF, Ribbons DW (1975) Metabolism of resorcinylic compounds by bacteria. Purification and properties of acetylpyruvate hydrolase from Pseudomonas putida 01. J Biol Chem 250: 3826–3830

    CAS  PubMed  Google Scholar 

  • Dimroth P (1987) Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 51: 320–340

    CAS  PubMed  Google Scholar 

  • Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270: 17–22

    CAS  PubMed  Google Scholar 

  • Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann Rev Microbiol 42: 289–317

    CAS  Google Scholar 

  • Fray GI (1958) Reaction of phloroglucinol with sodium borohydride. Tetrahedron 3: 316

    Article  CAS  Google Scholar 

  • Haddock JD, Ferry JG (1989) Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41. J Biol Chem 264: 4423–4427

    CAS  PubMed  Google Scholar 

  • Harwood CS, Gibson J (1986) Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacteriol 165: 504–509

    CAS  PubMed  Google Scholar 

  • Kaiser JP, Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch Microbiol 133: 185–194

    Article  CAS  Google Scholar 

  • Krumholz LR, Crawford RL, Hemling ME, Bryant MP (1987) Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J Bacteriol 169: 1886–1890

    CAS  PubMed  Google Scholar 

  • Lynen F, Ochoa S (1953) Enzymes of fatty acid metabolism. Biochim Biophys Acta 12: 299–314

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1949) Metabolism of 3,5-diketohexanoic acid and its δ-lactone by tissue homogenates. J Biol Chem 178: 577–589

    CAS  Google Scholar 

  • Michal G, Bergmeyer HU (1974) Coenzym A. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 3rd edn, vol II. Verlag Chemie, Weinheim, pp 2020–2023

    Google Scholar 

  • Patel TR, Jure KG, Jones GA (1981) Catabolism of phloroglucinol by the rumen anaerobe Coprococcus. Appl Environ Microbiol 42: 1010–1017

    CAS  PubMed  Google Scholar 

  • Patel TR, Hameed N, Martin AM (1990) Initial steps of phloroglucinol metabolism in Penicillium simplicissimum. Arch Microbiol 153: 438–443

    Article  CAS  Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149: 136–141

    Article  CAS  PubMed  Google Scholar 

  • Samain E, Albagnac G, Dubourguier HC (1986) Initial steps of catabolism of trihydroxybenzenes in Pelobacter acidigallici. Arch Microbiol 144: 242–244

    Article  CAS  Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. spec. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133: 195–201

    CAS  Google Scholar 

  • Schnell S, Brune A, Schink B (1991) Degradation of hydroxyhydroquinone by strictly anaerobic fermenting bacterium Pelobacter massiliensis sp. nov. Arch Microbiol 155: 511–516

    Article  CAS  Google Scholar 

  • Snow Boles J, Crerar DA, Grissom G, Key TC (1988) Aqueous thermal degradation of gallic acid. Geochim Cosmochim Acta 52: 341–344

    Google Scholar 

  • Stern JR (1956) Optical properties of acetoacetyl-S-coenzyme A and its metal chelates. J Biol Chem 221: 33–44

    CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    CAS  PubMed  Google Scholar 

  • Whittle PJ, Lunt DO, Evans WC (1976) Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp. Biochem Soc Trans 4: 490–491

    CAS  PubMed  Google Scholar 

  • Witter RF, Stotz E (1948a) Synthesis and properties of triacetic acid. J Biol Chem 176: 485–492

    CAS  Google Scholar 

  • Witter RF, Stotz E (1948b) The metabolism in vitro of triacetic acid and related diketones. J Biol Chem 176: 501–510

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, A., Schink, B. Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157, 417–424 (1992). https://doi.org/10.1007/BF00249098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249098

Key words

Navigation