Skip to main content
Log in

Bifurcation and resonance in a model for bursting nerve cells

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we consider a model for the phenomenon of bursting in nerve cells. Experimental evidence indicates that this phenomenon is due to the interaction of multiple conductances with very different kinetics, and the model incorporates this evidence. As a parameter is varied the model undergoes a transition between two oscillatory waveforms; a corresponding transition is observed experimentally. After establishing the periodicity of the subcritical oscillatory solution, the nature of the transition is studied. It is found to be a resonance bifurcation, with the solution branching at the critical point to another periodic solution of the same period. Using this result a comparison is made between the model and experimental observations. The model is found to predict and allow an interpretation of these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, J. C., Yorke, J. A.: Global bifurcation of periodic orbits. Preprint

  2. Carpenter, G. A.: Periodic solutions of nerve impulse equations. J. Math. Anal. Appl. 58, 152–173 (1977)

    Google Scholar 

  3. Carpenter, G. A.: Bursting phenomena in excitable membranes. SIAM J. Appl. Math. in press (1980)

  4. Flatto, L., Levinson, N.: Periodic solutions of singularly perturbed systems. J. Rat. Mech. Anal. 4, 943–950 (1955)

    Google Scholar 

  5. Gorman, A. L. F., Thomas, M. V.: Changes in the intracellular concentration of free calcium ions in a pace-maker neurone, measured with metallochromic indicator dye arsenazo III. J. Physiol. (London) 275, 357–376 (1978)

    Google Scholar 

  6. Guckenheimer, J.: Patterns of bifurcation. Preprint

  7. Hindmarsh, A. C.: GEAR: Ordinary differential equation system solver. Univ. of Calif., Lawrence Livermore Lab. UCID-30001, 1974

  8. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544 (1952)

    Google Scholar 

  9. Hsu, I.-D., Kazarinoff, N. D.: An applicable bifurcation formula and instability of small periodic solutions of the Field-Noyes model. J. Math. Anal. Appl. 55, 61–89 (1976)

    Google Scholar 

  10. IMSL Library Reference Manual. Texas, Houston: The International Mathematics and Statistics Library 1979

  11. Iooss, G., Joseph, D. D.: Bifurcation and stability of nT-periodic solutions branching from T-periodic solutions at points of resonance. Arch. Rat. Mech. Anal. 66, 135–172 (1977)

    Google Scholar 

  12. Junge, D., Stephens, C. L.: Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia. J. Physiol. (London) 235, 155–181 (1973)

    Google Scholar 

  13. Lefschetz, S.: Differential equations: Geometric theory. John Wiley-Interscience, New York 1963

    Google Scholar 

  14. Mathieu, P. A., Roberge, F. A.: Characteristics of pacemaker oscillations in Aplysia neurons. Can. J. Physiol. Pharmacol. 49, 787–795 (1971)

    Google Scholar 

  15. Meech, R. W.: The sensitivity of Helix Aspersa neurones to injected calcium ions. J. Physiol. (London) 237, 259–277 (1974)

    Google Scholar 

  16. Plant, R. E.: The effects of calcium++ on bursting neurons: A modelling study. Biophys. J. 21, 217–237 (1978)

    Google Scholar 

  17. Plant, R. E., Kim, M.: On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell. Math. Biosci. 26, 357–375 (1975)

    Google Scholar 

  18. Plant, R. E., Kim, M.: Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophys. J. 16, 227–244 (1976)

    Google Scholar 

  19. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Google Scholar 

  20. Sacker, R.: On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. New York University, IMM-NYU, 333, 1964

  21. Selverston, A. I., Russell, D. F., Miller, J. P., King, D. C.: The stomatogastric nervous system: Structure and function of a small neural network. Prog. Neurobiol. 7, 215–290 (1976)

    Google Scholar 

  22. Strumwasser, F.: Membrane and intracellular mechanism governing endogenous activity in neurons. Physiological and biochemical aspects of nervous integration (F. D. Carlson, ed.), pp. 329–342, 1968

  23. Thompson, S. H.: Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol. (London) 265, 465–488 (1977)

    Google Scholar 

  24. Traub, R. D., Llinas, R.: Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epilepto-genesis. J. Neurophysiol. 42, 476–496 (1979)

    Google Scholar 

  25. Troy, W. C.: Bifurcation phenomenon in FitzHugh's nerve conduction equations. J. Math. Anal. Appl. 54, 678–690 (1976)

    Google Scholar 

  26. Watanabe, A., Obara, S., Akiyama, T.: Pacemaker potentials for the periodic burst discharge in the heart ganglion of a stomatopod, Squilla oratoria. J. Gen. Physiol. 50, 839–862 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plant, R.E. Bifurcation and resonance in a model for bursting nerve cells. J. Math. Biology 11, 15–32 (1981). https://doi.org/10.1007/BF00275821

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275821

Key words

Navigation