Skip to main content
Log in

Static equilibrium configurations of a model red blood cell

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

The membrane of the red blood cell is modeled as a fluid shell which resists bending and changes in area. The differential equations governing the mechanical equilibrium of such a membrane are derived and axisymmetric solutions are obtained numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, K. H.: Mechanical Equilibrium of Biological Membranes. Biophysical J. 12, 123–130 (1972).

    Google Scholar 

  • Adams, K. H.: Mechanical Deformibility of Biological Membranes and the Sphering of the Erythrocyte. Biophysical J. 13, 209–217 (1973a).

    Google Scholar 

  • Adams, K. H.: A Theory for the Shape of the Red Blood Cell. Biophysical J. 13, 1049–1053 (1973b).

    Google Scholar 

  • Bellman, R. E., Kabala, R. E.: Quasilinearization and Nonlinear Boundary Value Problems. New York: American Elsevier 1965.

    Google Scholar 

  • Canham, P. B., Burton, A. C.: Distribution of Size and Shape in Populations of Normal Human Red Cells. Circ. Res. 22, 405–422 (1968).

    Google Scholar 

  • Canham, P. B.: The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Red Blood Cell. J. Theor. Biol. 26, 61–81 (1970).

    Google Scholar 

  • Canham, P. B., Parkinson, D. R.: The Area and Voume of Single Human Erythrocytes During Gradual Osmotic Swelling of Hemolysis. Can. J. Physiol. Pharmacol. 48, 369–376 (1970).

    Google Scholar 

  • Deuling, H. J., Helfrich, W.: Red Blood Cell Shapes as Explained on the Basis of Curvature Elasticity. Biophysical J. 16, 861–868 (1976 a).

    Google Scholar 

  • Deuling, H. J., Helfrich, W.: The Curvature Elasticity of Fluid Membranes: A Catalogue of Vesicle Shapes. J. Phys. 37, 1335–1345 (1976 b).

    Google Scholar 

  • Eisenhart, L.: An Introduction to Differential Geometry. Princeton: Princeton University Press 1947.

    Google Scholar 

  • Fergason, J. L., Brown, G. H.: Liquid Crystals and Living Systems. J. Amer. Oil Chemists Soc. 45, 120–127 (1968).

    Google Scholar 

  • Fung, Y. C.: Theoretical Considerations of the Elasticity of Red Cells and Small Blood Vessels. Federation Proc. 25, 1761–1772 (1966).

    Google Scholar 

  • Fung, Y. C. B., Tong, P.: Theory of the Sphering of Red Blood Cells. Biophysical J. 8, 175–198 (1968).

    Google Scholar 

  • Helfrich, W.: Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch. 28c, 693–703 (1973).

    Google Scholar 

  • Helfrich, W.: Blocked Lipid Exchange in Bilayers and its Possible Influence on the Shape of Vesicles. Z. Naturforsch. 29c, 510–515 (1974).

    Google Scholar 

  • Helfrich, W., Deuling, H. J.: Some Theoretical Shapes of Red Blood Cells. J. Phys. 36-cl, 327–329 (1975).

    Google Scholar 

  • Jenkins, J. T.: The Equations of Mechanical Equilibrium of a Model Membrane. S.I.A.M., J. Appl. Math. (to appear).

  • Lew, H. S.: Effect of Membrane Potential on the Mechanical Equilibrium of Biological Membranes. J. Biomech. 3, 569–582 (1970).

    Google Scholar 

  • Lew, H. S.: Electro-tension and Torque in a Biological Membrane Modeled as a Dipole Sheet in Fluid Conductors. J. Biomech. 5, 399–408 (1972).

    Google Scholar 

  • Naghdi, P.M.: Foundations of Elastic Shell Theory, in: Progress in Solid Mechanics, Vol. IV (Sneddon, I. N., Hill, R., ed.), pp. 3–90. Amsterdam: North-Holland 1963.

    Google Scholar 

  • Rand, R. P., Burton, A. C.: Mechanical Properties of the Red Cell Membrane I. Membrane Stiffness and Intracellular Pressure. Biophysical J. 4, 115–135 (1964).

    Google Scholar 

  • Rand, R. P.: Mechanical Properties of the Red Cell Membrane II. Viscoelastic Breakdown of the Membrane. Biophysical J. 4, 303–316 (1964).

    Google Scholar 

  • Rand, R. P.: Some Biophysical Considerations of the Red Cell Membrane. Federation Proc. 26, 1780–1784 (1967).

    Google Scholar 

  • Singer, S. J., Nicolson, G. L.: The Fluid Mosaic Model of the Structure of Cell Membranes. Science 175, 720–731 (1972).

    Google Scholar 

  • Skalak, R., Tozeren, A., Zarda, R. P., Chien, S.: Strain Energy Function of the Red Blood Cell Membranes. Biophysical J. 13, 245–264 (1973).

    Google Scholar 

  • Zarda, P. R., Chien, S., Skalak, R.: Sphering and Formation of Red Blood Cells, in: 1975 Biomechanics Symposium. AMD Vol. 10 (Skalak, R., Nerem, R.N., ed.), pp. 49–52. New York: American Society of Mechanical Engineers 1975.

    Google Scholar 

  • Zarda, P. R.: Large Deformations of an Elastic Shell in a Viscous Fluid. Ph. D. Dissertation, Columbia University, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, J.T. Static equilibrium configurations of a model red blood cell. J. Math. Biology 4, 149–169 (1977). https://doi.org/10.1007/BF00275981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275981

Keywords

Navigation