Skip to main content
Log in

Modeling mixed-mode dynamic crack propagation nsing finite elements: Theory and applications

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Previous work in modeling dynamic fracture has assumed the crack will propagate along predefined mesh lines (usually a straight line). In this paper we present a finite element model of mixed-mode dynamic crack propagation in which this constraint is removed. Applying linear elasto-dynamic fracture mechanics concepts, discrete cracks are allowed to propagate through the mesh in arbitrary directions. The fracture criteria used for propagation and the algorithms used for remeshing are described in detail. Important features of the implementation are the use of triangular elements with quadratic shape functions, explicit time integration, and interactive computer graphics. These combine to make the approach robust and applicable to a broad range of problems.

Example analyses of straight and curving crack problems are presented. Verification problems include a stationary crack under dynamic loading and a propagating crack in an infinite body. Comparisons with experimental data are made for curving propagation in a cracked plate under biaxial loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achenbach, J. D.; Bazant, Z. P. (1975): Elastodynamic near-tip stress and displacement fields for rapidly propagating cracks in orthotropic materials. J. Appl. Mech. 18/1, 1–22

    Google Scholar 

  • Atluri, S. N.; Nishioka, T. N. (1985): Numerical studies in dynamic fracture mechanics. Int. J. Fracture 27, 245–261

    Google Scholar 

  • Barsoum, R. S. (1977): Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int. J. Num. Meth. for Eng. 9, 495–507

    Google Scholar 

  • Bathe, K.-J. (1982): Finite element procedures in engineering analysis. New Jersey: Prentice-Hall

    Google Scholar 

  • Belytschko, T.; Hughes, T. R. (eds.) (1983): Computational methods for transient analysis. Amsterdam: North-Holland

    Google Scholar 

  • Broberg, K. B. (1951): The moving griffith crack. Phil. Mag. 42, 739–750

    Google Scholar 

  • Chen, Y. M.; Wilkins, M. L. (1977): Numerical analysis of dynamic Crack Problems. Elastodynamic crack problems. Leyden: Noordhoff

    Google Scholar 

  • Dadkhah, M. S. (1984): Dynamic fracture under the influence of biaxial state of stress. Master's Thesis, Mech. Eng., University of Washington

  • Freund, L. B. (1972a): Crack propagation in an elastic solid subjected to general loading-I. Constant rate of extension. J. Mech. Phys. Solids 20, 129–140

    Google Scholar 

  • Freund, L. B. (1972b): Crack propagation in an elastic solid subjected to general loading-II. Non-uniform rate of extension. J. Mech. Phys. Solids 20, 141–152

    Google Scholar 

  • Freund, L. B. (1973): Crack propagation in an elastic solid subjected to general loading-III. Stress wave loading. J. Mech. Phys. Solids 21, 47–61

    Google Scholar 

  • Freund, L. B. (1974): Crack propagation in an elastic solid subjected to general loading-III. Stress wave loading. J. Mech. Phys. Solids 22, 137–146

    Google Scholar 

  • Freund, L. B.; Clifton, R. J. (1974): On the uniqueness of plane elastodynamic solutions for running cracks. J. Elasticity 4 293–299

    Google Scholar 

  • Hawong, J. S.; Kobayashi, M. S.; Dadkhah, M. S.; Kang, S. J.; Ramulu, M.: Dynamic crack curving and branching under biaxial loading. Office of Naval Res., Tech. Rpt. No. UWA/DME/Tr-85/50

  • Henshell, R. D.; Shaw, K. G. (1975): Crack tip finite elements are unnecessary. Int. J. Numer. Meth. in Eng. 12, 93–99

    Google Scholar 

  • Jung, J.; Ahmad, J.; Kanninen, M. F.; Popelar, C. H. (1981): Finite element analysis of dynamic crack propagation. Failure prevention and reliability, Proc. of the design engineering technical conference sponsored by the reliability stress analysis and failure prevention committee, the design engineering division of ASME, Hartford, Conn.

  • Key, S. W.; Beisinger, Z. E.; Krieg, R. D. (1978): Hondo II — A finite element computer program for the large deformation dynamic response of axisymmetric solids. SAND78–0422, Sandia National Laboratories, Alburquerque, NM.

    Google Scholar 

  • Kobayashi, A. S.; Emery, A. S.; Mall, S. (1976): Dynamic-finite-element and dynamic-photoelastic analyses of two fracturing homalite-100 plates. Exper. Mech. 16/9, 321–328

    Google Scholar 

  • Koh, H. M.; Haber, R. B. (1986): A mixed Eulerian-Lagrangian model for the analysis of dynamic fracture. UILU-ENG86–2003, University of Illinois, Urbana, Ill.

    Google Scholar 

  • Metcalf, J. T.; Kobayashi, T. (1986): Comparison of crack behavior in homalite 100 and araldite B. Crack arrest methodology and applications, ASTM STP 711, Hahn, G. T.; Kanninen, M. F. (eds.), Amer. Soc. of Testing and Materials, 128–145

  • Nilsson, F. (1972): Dynamic stress-intensity factors for finite strip problems. Int. J. Fracture Mechanic 8/4, 403–411

    Google Scholar 

  • Nishioka, T.; Atluri, S. N. (1980a): Numerical modeling of dynamic crack propagation in finite bodies, by moving singular elements-part 1: Formulation. J. Appl. Mech. 47, 570–576

    Google Scholar 

  • Nishioka, T.; Atluri, S. N. (1986b): Numerical modeling of dynamic crack propagation in finite bodies by moving singular elements — part 2: Results. J. Appl. Mech. 47, 577–582

    Google Scholar 

  • Nishioka, T.; Atluri, S. N. (1983): Path-independent integrals, energy release rates and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics. Eng. Frac. Mech. 18/1, 1–22

    Google Scholar 

  • Radok, J. R. M. (1956): On the solution of problems of dynamic plane elasticity. Q. Appl. Mathem. 14, 289–298

    Google Scholar 

  • Rosakis, A. J.; Duffy, J.; Freund, L. B. (1984): The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method. J. Mech. Phys. Solids 31/3, 251–260

    Google Scholar 

  • Rossmanith, H.P. (1983): How mixed-mode crack propagation? A dynamic photoelastic study. J. Mech. Phys. Solids 31/3, 251–260

    Google Scholar 

  • Sih, G. C.; Chen, E. P. (1977): Cracks moving at constant velocity and acceleration. Elastodynamic crack problems. Leyden: Noordhoff

    Google Scholar 

  • Shaw, R. D.; Pitchen, R. G. (1978): Modifications to the Suhara-Fukuda method of network generation. Int. J. Numer. Meth. Eng. 12, 93–99

    Google Scholar 

  • Swenson, D. V. (1986): Derivation of the near-tip stress and displacement fields for constant velocity crack without using complex functions. Tech. note in Eng. Fract. Mech. 18/1, 1–22

    Google Scholar 

  • Swenson, D.V. (1985): Modeling mixed-mode dynamic crack propagation using finite elements. Dept. Struct. Eng. Rpt. No. 85–10, Civil and Environmental Engineering, Cornell University, Ithaca, NY

    Google Scholar 

  • Swenson, D. V. (1986): On using combined experimental/analysis to generate dynamic critical stress intensity data. Presented at 19th national symposium on fracture mechanics, June 30–July 2, San Antonio, Texas. ASTM STP (to be publ.)

  • Thau, S. A.; Lu Tsin-Ywei (1971): Transient stress intensity for a finite crack in an elastic solid caused by a dilatational wave. Int. J. Solids and Struct. 7, 731–750

    Google Scholar 

  • Valliappan, S.; Marti, V. (1985): Automatic remeshing technique in quasi-static and dynamic crack propagation. Proc. of the NUMETA 1985 Conference, Swansea, January 7–11

  • Yoffe, E. H. (1951): The moving griffith crack. Philosophical Magazine 42, 739–750

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri April 3, 1987

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swenson, D.V., Ingraffea, A.R. Modeling mixed-mode dynamic crack propagation nsing finite elements: Theory and applications. Computational Mechanics 3, 381–397 (1988). https://doi.org/10.1007/BF00301139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301139

Keywords

Navigation