Skip to main content
Log in

Subgrid-scale modelling at low mesh reynolds number

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Subgrid-scale models are derived for large-eddy simulations in the limit of low mesh Reynolds number, or, equivalently, resolution approaching that required for full resolution of the simulated turbulent flow. The models are constructed from standard forms of the dissipation spectrum in a manner analogous to that used to derive the classical Smagorinsky-Lilly model from the inertial range spectrum. Practical methods for computing the subgrid-scale eddy viscosity are described, together with examples of the effects of using such models in a real simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chandrasekhar, S. (1949). On Heisenberg's elementary theory of turbulence. Proc. Roy. Soc. London Ser. A, 200, 20–33.

    Google Scholar 

  • Deschamps, V. (1987). Thése de Doctorat, Institut National Polytechnique de Toulouse.

  • Ducros, F., and Comte, P. (1994). Large-eddy simulation of a weakly compressible boundary layer developing spatially over a flat plate. Presented at the Fifth European Turbulence Conference, Siena, 5–8 July 1994.

  • Fatica, M., Orlandi, P., and Verzicco, R. (1994). Direct and large-eddy simulations of round jets. In Direct and Large-Eddy Simulation I: Proceedings of the First ERCOFT AC Workshop (P.R. Voke, L. Kleiser and J.P. Chollet, eds.), pp. 49–60. Kluwer, Amsterdam.

    Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3, 1760–1765 and 3128.

    Google Scholar 

  • Grötzbach, G. (1986). Application of the TURBIT-3 subgrid scale model to scales between large eddy and direct simulations. In Direct and Large Eddy Simulation of Turbulence (U. Schumann and R. Friedrich, eds.). Notes on Numerical Fluid Mechanics, Vol. 15, pp. 210–226. Vieweg, Braunschweig.

    Google Scholar 

  • Heisenberg, W. (1948). On the theory of statistical and isotropic turbulence. Proc. Roy. Soc. London Ser. A, 195, 402–406.

    Google Scholar 

  • Horiuti, K. (1986). On the use of SGS modelling in the simulation of transition in plane channel flow. J. Phys. Soc. Japan, 55, 1528.

    Google Scholar 

  • Kolmogorov A.N. (1941a). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR, 30, 301–305.

    Google Scholar 

  • Kolmogorov, A.N. (1941b). Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk. SSSR, 32, 16–18.

    Google Scholar 

  • Kovasznay, L.S.G. (1948). Spectrum of locally isotropic turbulence. J. Aero. Sci., 15, 745–753.

    Google Scholar 

  • Lilly, D.K. (1966). On the application of the eddy viscosity concept in the inertial subrange of turbulence. NCAR MS 123, National Centre for Atmospheric Research, Boulder, Colorado.

    Google Scholar 

  • Lilly, D.K. (1967). The representation of small-scale turbulence in numerical simulations. Proc. IBM Scientific Computing Symposium on Environmental Sciences, pp. 195–209. IBM form no. 320-1951, White Plains, New York.

    Google Scholar 

  • Nishino, K., and Kasagi, N. (1989). Turbulence statistics measurement in a two-dimensional channel flow using a three-dimensional particle tracking velocimeter. Proc. Seventh Symposium on Turbulent Shear Flows, Stanford University, August 1989, Vol. 2, paper 22–1.

  • Obukhov, A.M. (1941). On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk. SSSR, 32, 19–21.

    Google Scholar 

  • Pao, Y.-H. (1965). Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids, 8, 1063–1075.

    Google Scholar 

  • Piomelli, U., Zang, T.A., Speziale, C.G., and Hussaini, M.Y. (1990). On the large-eddy simulation of transitional wall-bounded flows. Phys. Fluids A, 2, 257–265.

    Google Scholar 

  • Ronchi, C., Ypma, M., and Canuto, V.M. (1992). On the application of the Germano identity to subgrid-scale modelling. Phys. Fluids A, 4, 2927–2929.

    Google Scholar 

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations: part I, the basic experiment. Monthly Weather Rev., 91, 99–164.

    Google Scholar 

  • Townsend, A.A. (1951). On the fine-scale structure of turbulence. Proc. Roy. Soc. London Ser. A, 208, 534–542.

    Google Scholar 

  • Voke, P.R. (1990). Multiple mesh simulation of turbulent flow. Report QMW EP-1082, QMW, University of London, London.

    Google Scholar 

  • Yang Z.Y., and Voke, P.R. (1993). Large-eddy simulation studies of bypass transition. In Engineering Turbulence Modelling and Experiments 2 (W. Rodi and F. Martelli, eds.), pp. 603–611. Elsevier, Amsterdam.

    Google Scholar 

  • Zhao, H. (1994). Ph.D. Thesis, University of Surrey, Guildford.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.Y. Hussaini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voke, P.R. Subgrid-scale modelling at low mesh reynolds number. Theoret. Comput. Fluid Dynamics 8, 131–143 (1996). https://doi.org/10.1007/BF00312367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312367

Keywords

Navigation