Skip to main content
Log in

Calcium-binding proteins: selective markers of nerve cells

  • Review Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abe H, Amano O, Yamakuni T, Takahashi Y, Kondo H (1990) Localization of spot 35-calbindin (rat cerebellar calbindin) in the anterior pituitary of the rat: developmental and sexual differences. Arch Histol Cytol 53:585–591

    Google Scholar 

  • Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hear Res 49:281–298

    Google Scholar 

  • Adolph S, Berchtold MW, Hameister H (1989) Fine localization of genes on distal murine chromosome 15. Cytogenet Cell Genet 52:177–179

    Google Scholar 

  • Akil M, Lewis DA (1992a) Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex. Exp Neurol 115:239–249

    Google Scholar 

  • Akil M, Lewis DA (1992b) Postnatal development of parvalbumin immunoreactivity in axon terminals of basket and chandelier neurons in monkey neocortex. Prog Neuropsychopharmacol Biol Psychiatry 16:329–337

    Google Scholar 

  • Akke M, Forsen S (1990) Protein stability and electrostatic interactions between solvent exposed charged side chains. Proteins 8:23–29

    Google Scholar 

  • Alonso JR, Coveñas R, Lara J, Aijón J (1990) Distribution of parvalbumin immunoreactivity in the rat septal area. Brain Res Bull 24:41–48

    Google Scholar 

  • Alonso JR, Arévalo R, Brinon JG, Lara J, Weruaga E, Aijón J (1992a) Parvalbumin immunoreactive neurons and fibres in the teleost cerebellum. Anat Embryol (Berl) 185:355–361

    Google Scholar 

  • Alonso JR, Sánchez F, Arévalo R, Carretero J, Aijón J, Vázquez R (1992b) CaBP D-28k and NADPH-diaphorase coexistence in the magnocellular neurosecretory nuclei. Neuroreport 3:249–252

    Google Scholar 

  • Andressen C, Gotzos V, Celio MR (1991) Expression of parvalbumin after transfection of neuronal and non-neuronal cells. Soc Neurosci Abstr 17:453

    Google Scholar 

  • Antal M, Freund TF, Polgar E (1990) Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J Comp Neurol 295:467–484

    Google Scholar 

  • Aoki E, Semba R, Seto-Ohshima A, Heizmann CW, Kashiwamat S (1990) Coexistence of parvalbumin and glycine in the rat brainstem. Brain Res 525:140–143

    Google Scholar 

  • Arai H, Emson PC, Mountjoy CQ, Carassco LH, Heizmann CW (1987) Loss of parvalbumin-immunoreactive neurones from cortex in Alzheimer-type dementia. Brain Res 418:164–169

    Google Scholar 

  • Arai H, Noguchi I, Makino Y, Kosaka K, Heizmann CW, Iizuka R (1991) Parvalbumin-immunoreactive neurons in the cortex in Pick's disease. J Neurol 238:200–202

    Google Scholar 

  • Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neurol 310:21–44

    Google Scholar 

  • Arimura C, Suzuki T, Yanagisawa M, Imamura M, Hamada Y, Masaki T (1988) Primary structure of chicken skeletal muscle and fibroblast α-actinins deduced from cDNA sequences. Eur J Biochem 177:649–655

    Google Scholar 

  • Armbrecht HJ, Boltz M, Strong R, Richardson A, Bruns ME, Christakos S (1989) Expression of calbindin-D decreases with age in intestine and kidney. Endocrinology 125:2950–2956

    Google Scholar 

  • Aronin N, Chase K, Folsom R, Christakos S, DiFiglia M (1991) Immunoreactive calcium-binding protein (calbindin-D28k) in interneurons and trigeminothalamic neurons of the rat nucleus caudalis localized with peroxidase and immunogold methods. Synapse 7:106–113

    Google Scholar 

  • Arvidsson U, Ulfhake B, Cullheim S, Ramírez V, Shupliakov O, Hökfelt T (1992) Distribution of calbindin D28k-like immunoreactivity (LI) in the monkey ventral horn: do Renshaw cells contain calbindin D28k-LI? J Neurosci 12:718–728

    Google Scholar 

  • Asaoka K, Tanokura M (1990) Purification and characterization of the parvalbumin from monkey skeletal muscle. Comp Biochem Physiol [B] 96:665–669

    Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1987) Calcium action in synaptic transmitter release. Annu Rev Neurosci 10:633–693

    Google Scholar 

  • Baba ML, Goodman M, Berger-John J, Demaille JG, Matsuda G (1984) The early adaptive evolution of calmodulin. Mol Biol Evol 1:442–455

    Google Scholar 

  • Baimbridge KG, Miller JJ, Parkes CO (1982) Calcium-binding protein distribution in the rat brain. Brain Res 239:519–525

    Google Scholar 

  • Baimbridge KG, Kao J (1988) Calbindin D-28k protects against glutamate induced neurotoxicity in rat CA1 pyramidal neuron cultures. Soc Neurosci Abstr 14:1264

    Google Scholar 

  • Baimbridge KG, Peet MJ, McLennan H, Church J (1991) Bursting response to current evoked depolarization in rat CA1 pyramidal neurons is correlated with Lucifer yellow dye coupling but not with the presence of calbindin-D28k. Synapse 7:269–277

    Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium binding proteins in the nervous system. Trends Neurosci 15:303–308

    Google Scholar 

  • Bandyopadhyay S, Gosh SK (1990) Goat testis calmodulin: purification and physicochemical characterization. J Protein Chem 9:603–611

    Google Scholar 

  • Banfro F, Mize R (1991) Calbindin antibodies label specific cell classes in the cat lateral geniculate nucleus. Soc Neurosci Abstr 17:628

    Google Scholar 

  • Bar A, Shani M, Fullmer CS, Brindak ME, Striem S (1990) Modulation of chick intestinal and renal calbindin gene expression by dietary vitamin D3, 1,25-dihydroxyvitamin D3, calcium and phosphorus. Mol Cell Endocrinol 72:23–31

    Google Scholar 

  • Bar A, Striem S, Mayel Afshar S, Lawson DE (1990) Differential regulation of calbindin-D28K mRNA in the intestine and eggshell gland of the laying ben. J Mol Endocrinol 4:93–99

    Google Scholar 

  • Barakat I, Droz B (1989a) Calbindin-immunoreactive sensory neurons in dissociated dorsal root ganglion cell cultures of chick embryo: role of culture conditions. Dev Brain Res 50:205–216

    Google Scholar 

  • Barakat I, Droz B (1989b) Inducing effect of skeletal muscle extracts on the appearance of calbindin-immunoreactive dorsal root ganglion cells in culture. Neuroscience 28:39–47

    Google Scholar 

  • Barakat I, Droz B (1989c) Maintenance of neuronal expression of calbindin by a muscular extract in cultures of chick dorsal root ganglion cells. Neurosci Lett 99:1–5

    Google Scholar 

  • Barnstable CJ (1985) Monoclonal antibodies as molecular probes of the nervous system. In: Springer T (ed) Hybridoma technology in the biosciences and medicine. Plenum Press, New York, pp 269–289

    Google Scholar 

  • Baron MD, Davison MD, Jones P, Critchley DR (1987a) The sequence of chick α-actinin reveals homologies to spectrin and calmodulin. J Biol Chem 262:17623–17629

    Google Scholar 

  • Baron MD, Davison MD, Jones P, Patel B, Critcheley DR (1987b) Isolation and characterization of cDNA encoding a chick α-actinin. J Biol Chem 262:2558–2561

    Google Scholar 

  • Batini C (1990) Cerebellar localization and colocalization of GABA and calcium binding protein-D28K. Arch Ital Biol 128:127–149

    Google Scholar 

  • Batini C, Guegan M, Palestini M, Thomasset M (1991) The immunocytochemical distribution of calbindin-D 28k and parvalbumin in identified neurons of the pulvinar-lateralis posterior complex of the cat. Neurosci Lett 130:203–207

    Google Scholar 

  • Berchtold MW (1989a) Parvalbumin genes from human and rat are identical in intron/exon organization and contain highly homologous regulatory elements and coding sequences. J Mol Biol 210:417–427

    Google Scholar 

  • Berchtold MW (1989b) Structural organization of the human parvalbumin gene. Adv Exp Med Biol 255:251–256

    Google Scholar 

  • Berchtold MW (1989c) Structure and expression of genes encoding the three-domain Ca2+-binding proteins parvalbumin and oncomodulin. Biochim Biophys Acta 1009:201–215

    Google Scholar 

  • Berchtold M, Celio MR, Christakos S, Mattson MP, Schwaller B, Sloviter RS (1991) Ca2+-binding proteins as neuronal markers. In: Cheney DL (ed) Neuroscience facts, vol 2 (16). FIDIA Research Foundation, Washington

    Google Scholar 

  • Bergmann I, Nitsch R, Frotscher M (1991) Area-specific morphological and neurochemical maturation of non-pyramidal neurons in the rat hippocampus as revealed by parvalbumin immunocytochemistry. Anat Embryol (Berl) 84:403–409

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    Google Scholar 

  • Blümcke I, Celio MR (1992) Parvalbumin and calbindin D-28k immunoreactivities coexist within cytochrome oxidase-rich compartments of squirrel monkey Area 18. Exp Brain Res 92:39–45

    Google Scholar 

  • Blümcke I, Hof PR, Morrison JH, Celio MR (1990) Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol 301:417–432

    Google Scholar 

  • Blümcke I, Hof PR, Morrison JH, Celio MR (1991) Parvalbumin in the monkey striate cortex: a quantitative immunoelectron-microscopy study. Brain Res 554:237–243

    Google Scholar 

  • Bousez-Dumesnil N, Thomasset M, Ben-Ari Y (1989) Calbindin-D 28k in hippocampal organotypic cultures. Brain Res 486:165–169

    Google Scholar 

  • Braak E, Strotkamp B, Braak H (1991) Parvalbumin-immunoreactive structures in the hippocampus of the human adult. Cell Tissue Res 264:33–48

    Google Scholar 

  • Brauer K, Schober A, Wolff JR, Winkelmann E, Luppa H, Lüth HJ, Böttcher H (1991) Morphology of neurons in the rat basal forebrain nuclei-comparison between NADPH-diaphorase histochemistry and immunohistochemistry of glutamic acid decarboxylase, choline acetyltransferase, somatostatin and parvalbumin. J Hirnforsch 32:1–17

    Google Scholar 

  • Braun K (1990) Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Prog Histochem Cytochem 21:1–64

    Google Scholar 

  • Braun K, Schachner M, Scheich H, Heizmann CW (1986) Cellular localization of the Ca2+ binding protein parvalbumin in the developing avian cerebellum. Cell Tissue Res 243:69–78

    Google Scholar 

  • Braun K, Scheich H, Zuschratter W, Heizmann CW, Matute C, Streit P (1988) Postnatal development of parvalbumin-, calbindin-and adult GABA-immunoreactivity in two visual nuclei of zebra finches. Brain Res 475:205–217

    Google Scholar 

  • Braun K, Scheich H, Braun S, Rogers JH, Heizmann CW (1991a) Parvalbumin-, calretinin- and calbindin-D28k-immunoreactivity and GABA in a forebrain region involved in auditory filial imprinting. Brain Res 539:31–44

    Google Scholar 

  • Braun K, Scheich H, Heizmann CW, Hunziker W (1991b) Parvalbumin and calbindin-D28K immunoreactivity as developmental markers of auditory and vocal motor nuclei of the zebra finch. Neuroscience 40:853–869

    Google Scholar 

  • Brewer JM, Wunderlich JK, Kim DH, Carr MY, Beach GG, Ragland WL (1989) Avian thymic hormone is a parvalbumin. Biochem Biophys Res Commun 160:1155–1161

    Google Scholar 

  • Brewer JW, Wunderlich JK, Ragland WL (1990) The amino acid sequence of avian thymic hormone, a parvalbumin. Biochimie 72:653–660

    Google Scholar 

  • Bronner F (1990) Intracellular calcium regulation. Wiley, New York

    Google Scholar 

  • Buchan AM (1991) Neurofilament M and calbindin D28k are present in mutually exclusive subpopulations of enteric neurons in the rat submucous plexus. Brain Res 538:171–175

    Google Scholar 

  • Buffa R, Mare P, Salvadore M, Gini A (1990) Immunohistochemical detection of 28KDa calbindin in human tissues. Adv Exp Med Biol 269:205–210

    Google Scholar 

  • Campbell AK (1983) Intracellular calcium: its universal role as regulator. In: Gutfreund H (ed) Monographs in molecular biophysics and biochemistry. Wiley, New York, pp 1–556

    Google Scholar 

  • Carafoli E, Penniston JT (1985) The calcium signal. Sci Am 253:50–58

    Google Scholar 

  • Carr PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI (1989a) Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content. Neuroscience 33:363–371

    Google Scholar 

  • Carr PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI (1989b) Parvalbumin is highly colocalized with calbindin D28k and rarely with calcitonin gene-related peptide in dorsal root ganglia neurons of rat. Brain Res 497:163–170

    Google Scholar 

  • Celio MR (1986) Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995–997

    Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475

    Google Scholar 

  • Celio MR, Heizmann CW (1981) Calcium-binding protein parvalbumin as a neuronal marker. Nature 293:300–302

    Google Scholar 

  • Celio MR, Heizmann CW (1982) Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature 297:504–506

    Google Scholar 

  • Celio MR, Norman AW (1985) Nucleus basalis of Meynert neurons contain the vitamin D-induced calcium-binding protein (calbindin-D 28k). Anat Embryol (Berl) 173:143–148

    Google Scholar 

  • Celio MR, Schärer L, Morrison JH, Norman AW, Bloom FE (1986) Calbindin immunoreactivity alternates with cytochrome C oxidase-rich zones in some layers of the primate visual cortex. Nature 323:715–717

    Google Scholar 

  • Celio MR, Baier W, Schärer L, Viragh PA de, Gerday C (1988) Monoclonal antibodies directed against the calcium binding protein parvalbumin. Cell Calcium 9:81–86

    Google Scholar 

  • Celio MR, Baier W, Schärer L, Gregersen HJ, Viragh PA de, Norman AW (1990) Monoclonal antibodies directed against the calcium binding protein calbindin D-28k. Cell Calcium 11:599–602

    Google Scholar 

  • Chang HT, Kuo H (1991) Relationship of calbindin D-28k and cholinergic neurons in the nucleus basalis of Meynert of the monkey and the rat. Brain Res 549:141–145

    Google Scholar 

  • Chang HT, Kita H (1992) Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res 574:307–311

    Google Scholar 

  • Chard PS, Bleakman D, Miller RJ (1991) Parvalbumin is an intracellular Ca2+ buffering protein. Soc Neurosci Abstr 17:343

    Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    Google Scholar 

  • Chilosi M, Doglioni C, Pelosio P, Mombello A, Montagna L, Benedetti A, Lestani M, Giovanni P, Menestrina F (1992) Detection of calbindin-D immunoreactivity in human follicular dendritic cells. J Pathol 166:121–127

    Google Scholar 

  • Christakos S, Friedländer J, Frandsen BR, Norman AW (1979) Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution. Endocrinology 104:1495–1503

    Google Scholar 

  • Christakos S, Rhoten WB, Feldman SC (1987) Rat calbindin-D 28k: purification, quantification, immunocytochemical localization, and comparative aspects. Methods Enzymol 139:534–551

    Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    Google Scholar 

  • Clarke PGH (1989) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 263:1–19

    Google Scholar 

  • Collins JH, Graeser ML, Potter JD, Horn MJ (1977) Determination of the amino acid sequence of troponin-C from rabbit skeletal muscle. J Biol Chem 252:6356–6362

    Google Scholar 

  • Côté PY, Sadikot AF, Parent A (1991) Complementary distribution of calbindin D-28k and parvalbumin in the basal forebrain and midbrain of the squirrel monkey. Eur J Neurosci 3:1316–1329

    Google Scholar 

  • Coveñas R, Alonso JR, Dios M, Lara J, Aijón J (1989) Immunocytochemical study of parvalbumin fibers and cell bodies in the rat hypothalamus. Arch Ital Biol 127:265–273

    Google Scholar 

  • Coveñas R, De León M, Alonso JR, Arévalo R, Lara J, Aijón J (1991) Distribution of parvalbumin-immunoreactivity in the rat thalamus using a monoclonal antibody. Arch Ital Biol 129:199–210

    Google Scholar 

  • Cowan RL, Wilson EJ, Emson PC, Heizmann CW (1990) Parvalbumin-containing GABAergic interneurons in the rat neostriatum. J Comp Neurol 302:197–205

    Google Scholar 

  • Danos P, Frotscher M, Freund TF (1991) Non-pyramidal cells in the CA3 region of the rat hippocampus: relationships of fine structure, synaptic input and chemical characteristics. Brain Res 546:195–202

    Google Scholar 

  • Davenport AP, Augood SJ, Lawson DE, Emson PC (1990) The use of quantitative immunocytochemistry (QICC) to measure calbindin D28k-like immunoreactivity in the rat brain. Cell Mol Biol 36:1–11

    Google Scholar 

  • Day RA (1989) How to write and publish a scientific paper. 3rd edn Cambridge University Press, Cambridge

    Google Scholar 

  • Dechesne CJ, Winsky L, Lim HN, Goping G, Vu TD, Wenthold RJ, Jacobowitz DM (1991) Identification and ultrastructural localization of a calretinin-like calcium-binding protein (Protein 10) in the guinea pig and rat inner ear. Brain Res 560:139–148

    Google Scholar 

  • DeFelipe J, Jones EG (1991) Parvalbumin immunoreactivity reveals layer-IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations. Brain Res 562:39–47

    Google Scholar 

  • DeFelipe J, Jones EG (1992) High-resolution light and electron microscopic immunocytochemistry of colocalized GABA and calbindin D-28k in somata and double bouquet cell axons of monkey somatosensory cortex. Eur J Neurosci 4:46–60

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989a) Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA 86:2093–2097

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989b) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54

    Google Scholar 

  • DeFelipe J, Hendry SHC, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673

    Google Scholar 

  • Dememes D, Moniot B, Lomri N, Thomasset M, Sans A (1991) Detection of calbindin-D 28k mRNA in rat vestibular ganglion neurons by in situ hybridization. Mol Brain Res 9:153–156

    Google Scholar 

  • Demeulemeester H, Vandesande F, Orban GA, Brandom C, Vanderhaeghen JJ (1988) Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci 8:988–1000

    Google Scholar 

  • Demeulemeester H, Vandesande F, Orban GA, Heizmann CW, Pochet R (1989) Calbindin D-28k and parvalbumin immunoreactivity are confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus. Neurosci Lett 99:6–11

    Google Scholar 

  • Demeulemeester H, Arckens L, Vandesande F, Orban GA, Heizmann CW, Pochet R (1991a) Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex. Exp Brain Res 84:538–544

    Google Scholar 

  • Demeulemeester H, Arckens L, Vandesande F, Orban GA, Heizmann CW, Pochet R (1991b) Calcium binding proteins as molecular markers for cat geniculate neurons. Exp Brain Res 83:513–520

    Google Scholar 

  • De Robertis E, Bennett HS (1954) Submicroscopic vesicular component in the synapse. Fed Proc 13:35

    Google Scholar 

  • De Viragh PA, Haglid KD, Celio MR (1989) Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc Natl Acad Sci USA 86:3887–3890

    Google Scholar 

  • DiFiglia M, Christakos S, Aronin N (1989) Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling. J Comp Neurol 279:653–665

    Google Scholar 

  • Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L (1991) Recoverin: a calcium sensitive activator of retinal rod guanyl cyclase. Science 251:915–918

    Google Scholar 

  • Donato R (1991) Perspectives in S-100 protein biology. Cell Calcium 12:713–726

    Google Scholar 

  • Drake CT, Mulligan KA, Wimpey TL, Hendrickson A, Chavkin C (1991) Characterization of Vicia villosa agglutinin-labeled GABAergic interneurons in the hippocampal formation and in acutely dissociated hippocampus. Brain Res 554:176–185

    Google Scholar 

  • Dubois I, Gerday C (1990) Soluble calcium-binding proteins: parvalbumins and calmodulin from eel skeletal muscle. Comp Biochem Physiol [B] 95:381–385

    Google Scholar 

  • Duncan AMV, Higgins J, Dunn RJ, Allore R, Marks M (1989) Refined sublocalization of the human gene encoding the subunit of the S-100 protein (S-100β) and confirmation of a subtle t(9;21) translocation using in situ hybridization. Cytochem Cell Genet 50:234–235

    Google Scholar 

  • Dutar P, Potier B, Lamour Y, Senut MC (1991) Loss of calbindin-28k immunoreactivity in hippocampal slices from aged rats: a role for calcium? Eur J Neurosci 3:839–849

    Google Scholar 

  • Ellis JH, Richards DE, Rogers JH (1991) Calretinin and calbindin in the retina of the developing chick. Cell Tissue Res 264:197–208

    Google Scholar 

  • Emami S, Butler GD, Nabors B, Luo Q, Spencer RF, Mize RR (1991) Calbindin labeled neurons receive significant synaptic input from retinal terminals within the calbindin cell clusters of the cat pretectum. Soc Neurosci Abstr 17:113

    Google Scholar 

  • Enderlin S, Norman AW, Celio MR (1987) Ontogeny of the calcium binding protein calbindin D-28k in the rat nervous system. Anat Embryol (Berl) 177:15–28

    Google Scholar 

  • Endo L, Takazawa K, Onaya T (1985) Parvalbumin exists in rat endocrine glands. Endocrinology 117:527–531

    Google Scholar 

  • Endo T, Kobayashi M, Kobayashi S, Onaya T (1986) Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell Tissue Res 243:213–217

    Google Scholar 

  • Evans DP, Simonette RA, Rasmussen CD, Means AR, Tomasovic SP (1990) Altered synthesis of the 26-kDa heat stress protein family and thermotolerance in cell lines with elevated levels of calcium-binding proteins. J Cell Physiol 142:615–627

    Google Scholar 

  • Eybalin M, Ripoll C (1990) Immunolocalization of parvalbumin in two glutamatergic cell types of the guinea pig cochlea: inner hair cells and spinal ganglion neurons. CR Acad Sci [III] 310:639–644

    Google Scholar 

  • Ferrante RJ, Kowall NW, Richardson EP (1991) Proliferative and degenerative changes in striatal spiny neurons in Huntington's disease-a combined study using the section Golgi method and calbindin-D28k immunocytochemistry. J Neurosci 11:3877–3887

    Google Scholar 

  • Ferrer I, Soriano E, Tunón T, Fonseca M, Guionnet N (1991) Parvalbumin immunoreactive neurons in normal human temporal neocortex and in patients with Alzheimer's disease. J Neurol Science 106:135–141

    Google Scholar 

  • Ferrer I, Pineda M, Tallada M, Oliver B, Russi, Oller L, Noboa R, Zújar MJ, Alcántara S (1992a) Abnormal local-circuit neurons in epilepsia partialis continua associated with focal cortical dysplasia. Acta Neuropathol 83:647–652

    Google Scholar 

  • Ferrer I, Tuñón T, Soriano E, Rio A del, Iraizoz I, Fonseca M, Guionnet N (1992b) Calbindin immunoreactivity in normal human temporal neocortex. Brain Res 572:33–41

    Google Scholar 

  • Ferrer I, Zújar MJ, Admella C, Alcántara S (1992c) Parvalbumin and calbindin immunoreactivity in the cerebral cortex of the hedgehog (Erinaceus europaeus). J Anat 180:165–174

    Google Scholar 

  • Frassoni C, Bentivoglio M, Spreafico R, Sanchez MP, Puelles L, Fairen A (1991) Postnatal development of calbindin and parvalbumin immunoreactivity in the thalamus of the rat. Dev Brain Res 58:243–249

    Google Scholar 

  • Freund TF (1989) GABAergic septohippocampal neurons containing parvalbumin. Brain Res 478:375–381

    Google Scholar 

  • Freund TF, Gulyás AI (1991) GABAergic interneurons containing calbindin D28k or somatostatin are major targets of GABAergic basal forebrain afferents in the rat neocortex. J Comp Neurol 314:187–199

    Google Scholar 

  • Freund TF, Meskenaite V (1992) γ-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc Natl Acad Sci USA 89:738–742

    Google Scholar 

  • Freund TF, Buzsaki G, León A, Baimbridge KG, Somogyi P (1990a) Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res 83:55–66

    Google Scholar 

  • Freund TF, Gulyás AI, Acsady L, Gorcs T, Tóth K (1990b) Serotonergic control of the hippocampus via local inhibitory interneurons. Proc Natl Acad Sci USA 87:8501–8505

    Google Scholar 

  • Freund TF, Ylinen A, Miettinen R, Pitkänen A, Lathinen H, Baimbridge KG, Riekkinen PJ (1991) Patterns of neuronal death in the rat hippocampus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerability. Brain Res Bull 28:27–38

    Google Scholar 

  • Frotscher M (1992) Specifity of interneuronal connections. Ann Anat 174:377–382

    Google Scholar 

  • Füchtbauer EM, Rowlerson AM, Gotz K, Friedrich G, Mabuchi K, Gergely J, Jockusch H (1991) Direct correlation of parvalbumin levels with myosin isoforms and succinate dehydrogenase activity on frozen sections of rodent muscle. J Histochem Cytochem 39:355–361

    Google Scholar 

  • Fukuda T, Adachi E, Kawashima S, Yoshiya I, Hashimoto PH (1990) Immunohistochemical distribution of calcium-activated neutral proteinases and endogenous CANP inhibitor in the rabbit hippocampus. J Comp Neurol 302:100–109

    Google Scholar 

  • Fullmer CS (1990) Regulation of intestinal calbindin-D28K gene expression: a solution hybridization study. Arch Biochem Biophys 283:193–199

    Google Scholar 

  • Furness JB, Llewellyn Smith IJ, Bornstein JC, Costa M (1988) Chemical neuroanatomy and the analysis of neuronal circuitry in the enteric nervous system. In: Björklund A, Hökfelt T, Owman C (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 161–218

    Google Scholar 

  • Furness JB, Padbury RT, Baimbridge KG, Skinner JM, Lawson DE (1989) Calbindin immunoreactivity is a characteristic of enterochromaffin-like cells (ECL cells) of the human stomach. Histochemistry 92:449–451

    Google Scholar 

  • Furness JB, Kuramoto H, Messenger JP (1990a) Morphological and chemical identification of neurons that project from the colon to the inferior mesenteric ganglia in the guinea-pig. J Auton Nerv Syst 31:203–210

    Google Scholar 

  • Furness JB, Trussell DC, Pompolo S, Bornstein JC, Smith TK (1990b) Calbindin neurons of the guinea-pig small intestine: quantitative analysis of their numbers and projections. Cell Tissue Res 260:261–272

    Google Scholar 

  • Gabrielides C, McCormack AL, Hunt DF, Christakos S (1991) Brain calbindin-D28k and an Mr 29,000 calcium binding protein in cerebellum are different but related proteins: evidence obtained from sequence analysis by tandem mass spectrometry. Biochemistry 30:656–662

    Google Scholar 

  • Gahlmann R, Kedes L (1990) Cloning, structural analysis, and expression of the human fast twitch muscle troponin-C gene. J Biol Chem 265:12520–12528

    Google Scholar 

  • Gahlmann R, Wade R, Gunning P, Kedes L (1988) Differential expression of slow and fast twitch muscle troponin-C. Slow skeletal muscle troponin-C is expressed in human fibroblasts. J Mol Biol 201:379–391

    Google Scholar 

  • Garcia-Segura LM, Baetens D, Roth J, Norman AW, Orci L (1984) Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res 296:75–86

    Google Scholar 

  • Gerday C, Bolis L, Gilles R (1988) Calcium and calcium-binding proteins: molecular and functional aspects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 82:8780–8784

    Google Scholar 

  • Gillen MF, Banville D, Rutledge RG, Narang S, Seligy VL, Whitfield JF, MacManus JP (1987) A complete complementary DNA for the oncodevelopmental calcium-binding protein, oncomodulin. J Biol Chem 262:5308–5312

    Google Scholar 

  • Gillespie PG, Hudspeth AJ (1991) High-purity isolation of bullfrog hair bundles and subcellular and topological localization of constituent proteins. J Cell Biol 112:625–640

    Google Scholar 

  • Godzik A, Sander C (1989) Conservation of residue interactions in a family of calcium-binding proteins. Protein Eng 2:589–596

    Google Scholar 

  • Golden LF, Corson DC, Sykes BD, Banville D, MacManus JP (1989) Site-specific mutants of oncomodulin. 1H NMR and optical stopped-flow studies of the effect on the metal binding properties of an Asp59-Glu59 substitution in the calcium-specific site. J Biol Chem 264:20314–20319

    Google Scholar 

  • Goodman JH, Sloviter RS (1992) Evidence for commissurally projecting parvalbumin-immunoreactive basket cells in the dentate gyrus of the rat. Hippocampus 2:13–22

    Google Scholar 

  • Gotzos V, Schwaller B, Hetzel N, Bustos-Castillo M, Celio MR (1992) Expression of the calcium binding protein in WiDr cells and its correlation to their cell cycle. Exp Cell Res 202:292–302

    Google Scholar 

  • Graybiel AM, Liu FC, Dunnett SB (1989) Intrastriatal grafts derived from fetal striatal primordia. I. Phenotypy and modular organization. J Neurosci 9:3250–3271

    Google Scholar 

  • Greaves DS, Dufresne MJ, Fackrell HB, Warner AH (1991) Age-related changes and tissue distribution of parvalbumin in normal and dystrophic mice of strain 129 ReJ. Muscle Nerve 14:543–552

    Google Scholar 

  • Gregersen HJ, Heizmann CW, Kaegi U, Celio MR (1990) Ca2(+)-dependent mobility shift of parvalbumin in one- and two-dimensional gel-electrophoresis. Adv Exp Med Biol 269:89–91

    Google Scholar 

  • Gross M, Kumar R (1990) Physiology and biochemistry of vitamin D-dependent calcium binding proteins. Am J Physiol 259:F195–209

    Google Scholar 

  • Gulyás AI, Seress L, Tóth K, Acsady L, Antal M, Freund TF (1991a) Septal GABAergic neurons innervate inhibitory interneurons in the hippocampus of the macaque monkey. Neuroscience 41:381–390

    Google Scholar 

  • Gulyás AI, Tóth K, Dános P, Freund TF (1991b) Subpopulations of GABAergic neurons containing parvalbumin, calbindin-D28k, and cholecystokinin in the rat hippocampus. J Comp Neurol 312:371–378

    Google Scholar 

  • Hall AK, Norman AW (1990) Regulation of calbindin-D28K gene expression in the chick intestine: effects of serum calcium status and 1,25-dihydroxyvitamin D3. J Bone Miner Res 5:331–336

    Google Scholar 

  • Hall AK, Norman AW (1991a) Acute actions of 1,25-dihydroxyvitamin D3 upon chick pancreatic calbindin-D28K. Biochem Biophys Res Commun 176:1057–1061

    Google Scholar 

  • Hall AK, Norman AW (1991b) Vitamin D-independent expression of chick brain calbindin-D28K. Mol Brain Res 9:9–14

    Google Scholar 

  • Hamano K, Kiyama H, Emson PC, Manabe R, Nakauchi M, Tohyama M (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J Comp Neurol 302:417–424

    Google Scholar 

  • Hashikawa T, Rausell E, Molinari M, Jones EG (1991) Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res 544:335–431

    Google Scholar 

  • Hayes TL, Lewis DA (1992) Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex. Cerebral cortex 2:56–67

    Google Scholar 

  • Hedlich A, Lüth HJ, Werner L, Bar B, Hanisch U, Winkelmann E (1990) Gabaergic NADPH-diaphorase-positive Martinotti cells in the visual cortex in rats. J Hirnforsch 31:681–687

    Google Scholar 

  • Heizmann CW (1984) Parvalbumin, an intracellular calcium-binding protein: distribution, properties and possible roles in mammalian cells. Experientia 40:910–921

    Google Scholar 

  • Heizmann CW (1991) Novel calcium-binding proteins: fundamentals and clinical implications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Heizmann CW, Berchtold MW (1987) Expression of parvalbumin and other Ca2+-binding proteins in normal and tumor cells: a topical review. Cell Calcium 8:1–41

    Google Scholar 

  • Heizmann CW, Braun K (1992) Changes in Ca2+-binding proteins in human neurodegenerative disorders. Trends Neurosci 15:259–264

    Google Scholar 

  • Heizmann CW, Hunziker W (1990) Intracellular calcium-binding molecules. In: Bronner F (ed) Intracellular calcium regulation, Liss, New York, pp 211–248

    Google Scholar 

  • Heizmann CW, Hunziker W (1991) Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sciences 16:98–103

    Google Scholar 

  • Heizmann CW, Kägi U (1989) Structure and function of parvalbumin. Adv Exp Med Biol 255:215–222

    Google Scholar 

  • Heizmann CW, Röhrenbeck J, Kamphuis W (1990) Parvalbumin, molecular and functional aspects. Adv Exp Med Biol 269:57–66

    Google Scholar 

  • Hendrickson AE, VanBrederode JF, Mulligan KA, Celio MR (1991) Development of the calcium-binding protein parvalbumin and calbindin in monkey striate cortex. J Comp Neurol 307:626–646

    Google Scholar 

  • Hendry SHC, Jones EG (1991) GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium binding proteins. Brain Res 543:45–55

    Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivity. Exp Brain Res 76:467–472

    Google Scholar 

  • Henzl MT, Serda RE, Boschi JM (1991) Identification of a novel parvalbumin in avian thymic tissue. Biochem Biophys Res Commun 177:881–887

    Google Scholar 

  • Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by, a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer's disease. Exp Neurol 111:293–301

    Google Scholar 

  • Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer's disease. J Neuropathol Exp Neurol 50:451–462

    Google Scholar 

  • Hogan D, Berman NEJ (1991) Calbindin-D is transiently expressed in pyramidal cells of neonatal kittens in an area dependent pattern. Soc Neurosci Abstr 17:367

    Google Scholar 

  • Hökfelt T (1992) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    Google Scholar 

  • Holm IE, Geneser FA, Zimmer J, Baimbridge KG (1990) Immunocytochemical demonstration of the calcium-binding proteins calbindin-D 28k and parvalbumin in the subiculum, hippocampus and dentate area of the domestic pig. Prog Brain Res 83:85–97

    Google Scholar 

  • Hornung JP, Celio MR (1992) Serotoninergic, axons selectively innervate calbindin-containing interneurons in the neocortex and hippocampus of the marmoset. J Comp Neurol 320:457–467

    Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–964

    Google Scholar 

  • Houser CR, Vaughn JE, Hendry SHC, Jones EG, Peters A (1984) GABA neurons in the cerebral cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 201–254

    Google Scholar 

  • Huang YC, Lee S, Stolz R, Gabrielides C, Pansini Porta A, Bruns ME, Bruns DE, Miffin TE, Pike JW, Christakos S (1989) Effect of hormones and development on the expression, of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression. J Biol Chem 264:17454–17461

    Google Scholar 

  • Huntley GW, Jones EG (1990) Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins. J Neurocytol 19:200–212

    Google Scholar 

  • Hunziker W, Schrickel S (1988) Rat brain calbindin, D28k: six domain structure, and extensive amino acid homology with chicken calbindin D28. Mol Endocrinol 2:465–473

    Google Scholar 

  • Hutnik CM, MacManus JP, Banville D, Szabo AG (1990a) Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102. J Biol Chem 265:11456–11464

    Google Scholar 

  • Hutnik CM, MacManus JP, Szabo AG (1990b) A calcium-specific conformational response of parvalbumin. Biochemistry 29:7318–7328

    Google Scholar 

  • Iacopino AM, Christakos S (1990a) Corticosterone regulates calbindin-D28k mRNA and protein levels in rat hippocampus. J Biol Chem 265:10177–10180

    Google Scholar 

  • Iacopino AM, Christakos S (1990b) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082

    Google Scholar 

  • Iacopino AM, Rhoten WB, Christakos S (1990) Calcium binding protein (calbindin-D28k) gene expression, in the developing and aging mouse cerebellum. Brain Res Mol Brain Res 8:283–290

    Google Scholar 

  • Ichimiya Y, Emson PC, Mountjoy CQ, Lawson DEM, Heizmann CW (1988) Loss of calbindin-28K immunoreactive neurones from the cortex in Alzheimer-type dementia. Brain Res 475:156–159

    Google Scholar 

  • Ichimiya Y, Emson PC, Mountjoy CQ, Lawson DE, Iizuka R (1989) Calbindin-immunoreactive cholinergic neurones in the nucleus basalis of Meynert in alzheimer-type dementia. Brain Res 499:402–406

    Google Scholar 

  • Illing RB, Vogt DM, Spatz WB (1990) Parvalbumin in rat superior colliculus. Neurosci Lett 120:197–200

    Google Scholar 

  • Imamura M, Endo T, Kuruda M, Tanaka T, Masaki T (1988) Substructure and higher structure of chicken smooth muscle α-actinin molecule. J Biol Chem 163:7800–7805

    Google Scholar 

  • Inaguma Y, Kurobe N, Shinohara H, Kato K (1991), Sensitive immunoassay for rat parvalbumin — tissue distribution and developmental changes. Biochim Biophys Acta 1075:68–74

    Google Scholar 

  • Intrator S, Elion J, Thomasset M, Brehier A (1985) Purification, immunological and biochemical characterization of rat 28-K Da cholecalcin (cholecalciferol-induced CaBP's): identity between renal and cerebellar cholecalcins. Biochem J 231:89–95

    Google Scholar 

  • Ishimoto I, Kiyama H, Hamano K, Shiosaka S, Malbon CC, Nakauchi M, Emson PC, Manabe R, Tohyama M (1989) Colocalization of adrenergic receptors and vitamin-D-dependent calcium-binding protein (calbindin) in the dopaminergic amacrine cells of the rat retina. Neurosci Res 7:257–263

    Google Scholar 

  • Iwamoto N, Emson PC (1991) Demonstration of neurofibrillary tangles in parvalbumin-immunoreactive interneurones in the cerebral cortex of Alzheimer-type dementia brain. Neurosci Lett 128:81–84

    Google Scholar 

  • Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304:198–218

    Google Scholar 

  • Jockusch H, Friedrich G, Zippel M (1990) Serum parvalbumin, an indicator of muscle disease in murine dystrophy and myotonia. Muscle Nerve 13:551–555

    Google Scholar 

  • Johansen FF, Tonder N, Zimmer J, Baimbridge KG, Diemer NH (1990) Short-term changes of parvalbumin and calbindin immunoreactivity in the rat hippocampus following cerebral ischemia. Neurosci Lett 120:171–174

    Google Scholar 

  • Johansson C, Brodin P, Grundstrom T, Thulin E, Forsen S, Drakenberg T (1990) Biophysical studies of engineered mutant proteins based on calbindin D9k modified in the pseudo EF-hand. Eur J Biochem 187:455–460

    Google Scholar 

  • Jones EG, Hendry SHC (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1:222–246

    Google Scholar 

  • Jourdain A, Semba K, Fibiger HC (1989) Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat. Brain Res 505:55–65

    Google Scholar 

  • Kägi U, Berchtold MW, Heizmann CW (1987) Ca2+-binding parvalbumin in rat testis. J Biol Chem 262:7314–7320

    Google Scholar 

  • Kamphuis W, Huisman E, Wadman WJ, Heizmann CW, Lopes da Silva FH (1989) Kindling-induced changes in parvalbumin-immunoreactivity in rat hippocampus and its relation to longterm decrease in GABA-immunoreactivity. Brain Res 479:23–34

    Google Scholar 

  • Karmy G, Carr PA, Yamamoto T, Chan SH, Nagy JI (1991) Cytochrome oxidase immunohistochemistry in rat brain and dorsal root ganglia: visualization of enzyme in neuronal perikarya and in parvalbumin-positive neurons. Neuroscience 40:825–839

    Google Scholar 

  • Kashiba H, Senba E, Ueda Y, Tohyama M (1990) Calbindin D28k-containing splanchnic and cutaneous dorsal root ganglion neurons of the rat. Brain Res 528:311–316

    Google Scholar 

  • Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Immunocytochemical study of GABAergic, neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 72:347–362

    Google Scholar 

  • Kawaguchi Y, Katsumaru H, Kosaka T, Heizmann CW, Hama K (1987) Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res 416:369–374

    Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1989) Intracellular recording of identified neostriatal, patch and matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol 62:1052–1068

    Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10:3421–3438

    Google Scholar 

  • Kay BK (1990) Parvalbumin expression in normal and mutant Xenopus embryos. Adv Exp Med Biol 269:187–193

    Google Scholar 

  • Kelley PE, Frisina RD, Zettel ML, Walton JP (1992) Differential calbindin-like immunoreactivity in the brain stem auditory system of Chinchilla. J Comp Neurol 319:196–212

    Google Scholar 

  • Kikkawa U, Nishizuka Y (1986) The role of protein kinase-C in transmembrane signalling. Ann Rev Cell Biol 2:149–178

    Google Scholar 

  • Kiss J, Patel AJ, Baimbridge KG, Freund TF (1990a) Topographical localization of neurons containing parvalbumin and choline acetyltransferase in the medial septum-diagonal band region of the rat. Neuroscience 36:61–72

    Google Scholar 

  • Kiss J, Patel AJ, Freund TF (1990b) Distribution of septohippocampal neurons containing parvalbumin or choline acetyltransferase in the rat brain. J Comp Neurol 298:362–372

    Google Scholar 

  • Kita H, Kosaka T, Heizmann CW (1990) Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536:1–15

    Google Scholar 

  • Kiyama H, Seto-Ohshima A, Emson PC (1990) Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington's disease. Brain Res 525:209–214

    Google Scholar 

  • Kiyama H, Wu JC, Smith MW, Lawson ED, Emson PC (1991) Developmental control over vitamin-D-induced calbindin gene expression during early differentiation of chicken jejunal enterocytes. Differentiation 46:69–75

    Google Scholar 

  • Kobayashi K, Emson PC, Mountjoy CQ (1989) Vicia villosa lectinpositive neurones in human cerebral cortex. Loss in Alzheimertype dementia. Brain Res 498:170–174

    Google Scholar 

  • Kobayashi K Emson PC, Mountjoy CQ, Thornton SN, Lawson DE, Mann DM (1990) Cerebral cortical calbindin D28K and parvalbumin neurones in Down's syndrome. Neurosci Lett 113:17–22

    Google Scholar 

  • Kobayashi T, Sano M, Tsukagoshi H, Kamo I (1991) Muscle inactivity reduces the content of parvalbumin in rat thymic myoid cells in vitro. Neurosci Lett 131:221–224

    Google Scholar 

  • Köhr G, Mody I, (1991) Endogenous intracellular calcium buffering and the activation/inactivation of HVA calcium currents in rat dentate gyrus granule cells. J Gen Physiol 98:941–967

    Google Scholar 

  • Köhr G, Lambert CE, Mody I (1991) Calbindin-D28K (CaBP) levels and calcium currents in acutely dissociated epileptic neurons. Exp Brain Res 85:543–551

    Google Scholar 

  • Koller M, Schnyder B, Strehler EE (1990) Structural organization of the human CaMIII calmodulin gene. Biochim Biophys Acta 1087:180–189

    Google Scholar 

  • Koller M, Baumer A, Strehler EE (1991) Characterization of two novel human retropseudogenes. Gene 15:245–251

    Google Scholar 

  • Kosaka T, Heizmann CW (1989) Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for N-acetylgalactosamine. Brain Res 483:158–163

    Google Scholar 

  • Kosaka T, Katsumaru H, Hama K, Wu JY, Heizmann CW (1987) GABAergic neurons containing the Ca2+ binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 419:119–130

    Google Scholar 

  • Kosaka T, Heizmann CW, Barnstable CJ (1989) Monoclonal antibody VC1.1. selectively stains a population of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Exp Brain Res 78:43–50

    Google Scholar 

  • Kosaka T, Isogai K, Barnstable CJ, Heizmann CW (1990) Monoclonal antibody HNK-1 selectively stains a subpopulation of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat cerebral cortex. Exp Brain Res 82:566–574

    Google Scholar 

  • Kretsinger RH (1981) Mechanism of selective signaling by calcium (Neurosci Res Progr Bull, vol 19). MIT Press, Cambridge, Mass, pp 215–291

    Google Scholar 

  • Kumar CC, Mohan SR, Zavodny PJ, Narula SK, Leibowitz PJ (1989) Characterization and differential expression of human vascular smooth muscle myosin light chain 2 isoform in nonmuscle cells. Biochemistry 28:4027–4035

    Google Scholar 

  • Kumar VD, Lee L, Edwards BF (1990) Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5-A resolution. Biochemistry 29:1404–1412

    Google Scholar 

  • Kumar VD, Lee L, Edwards BF (1991) Refined crystal structure of ytterbium-substituted carp parvalbumin 4.25 at 1.5 A, and its comparison with the native and cadmium-substituted structures. FEBS Lett 283:311–316

    Google Scholar 

  • Kuramoto H, Furness JB, Gibbins IL (1990) Calbindin immunoreactivity in sensory and autonomic ganglia in the guinea pig. Neurosci Lett 115:68–73

    Google Scholar 

  • Kurobe N, Inaguma Y, Shinohara H, Semba R, Inagaki T, Kato K (1992) Developmental and age-dependent changes of 28-kDa calbindin-D in the central nervous tissue determined with a sensitive immunoassay method. J Neurochem 58:128–134

    Google Scholar 

  • Kuster T, Staudemann W, Hughes GJ, Heizmann CW (1991) Parvalbumin isoforms in chicken muscle and thymus. Amino acid sequence analysis of muscle parvalbumin by tandem mass spectrometry. Biochemistry 30:8812–8816

    Google Scholar 

  • Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and Parkinsonian monkeys. Neuroreport 2:601–604

    Google Scholar 

  • Leathers VL, Linse S, Forsen S, Norman AW (1990) Calbindin-D28K, a 1 alpha, 25-dihydroxyvitamin D3-induced calcium-binding protein, binds five or six Ca2+ ions with high affinity. J Biol Chem 265:9838–9841

    Google Scholar 

  • Lewis DA, Lund JS (1990) Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations. J Comp Neurol 293:599–615

    Google Scholar 

  • Li H, Christakos S (1991) Differential regulation by 1,25-dihydroxyvitamin D3 of calbindin-D9k and calbindin-D28k gene expression in mouse kidney. Endocrinology 128:2844–2852

    Google Scholar 

  • Liu AY, Abraham BA (1991) Subtractive cloning of a hybrid human endogenous retrovirus and calbindin gene in the prostate cell line PC3. Cancer Res 51:4107–4110

    Google Scholar 

  • Liu FC, Graybiel AM (1992) Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex. J Neurosci 12:674–690

    Google Scholar 

  • Livingstone MS, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology and perception. Science 240:740–749

    Google Scholar 

  • Löwenstein DH, Miles MF, Hatam F, McCabe T (1991) Up regulation of calbindin-D28K mRNA in the rat hippocampus following focal stimulation of the perforant path. Neuron 6:627–633

    Google Scholar 

  • Lomri N, Perret C, Gouhier N, Thomasset M (1989) Cloning and analysis of calbindin-D28K cDNA and its expression in the central nervous system. Gene 80:87–98

    Google Scholar 

  • Losier BJ, Matsubara JA (1990) Comparison of calbindin D28k and cytochrome C oxidase in electrosensory nuclei, of high-and low-frequency weakly electric fish (Gymnotiformes). Cell Tissue Res 260:29–39

    Google Scholar 

  • Lüth HJ, Fischer J, Celio MR (1992) Soybean lectin binding neurons in the visual cortex of the rat contain parvalbumin and are covered by glial nets. J Neurocytol 21:211–221

    Google Scholar 

  • Lunam CA (1989) Calbindin immunoreactivity in the neurons of the spinal cord and dorsal root ganglion of the domestic fowl. Cell Tissue Res 257:149–153

    Google Scholar 

  • MacManus JP, Watson DC, Yaguchi M (1983) The complete amino acid sequence of oncomodulin — a parvalbumin-like calcium-binding protein from Morris hepatoma 5123tc. Eur J Biochem 136:9–17

    Google Scholar 

  • Mai JK, Kedziora O, Teckhaus L, Sofroniew MV (1991) Evidence for subdivisions in the human suprachiasmatic nucleus. J Comp Neurol 305:508–525

    Google Scholar 

  • Manaye KF, Sonsolla PK, Brooks BA, German DC (1991) Calbindin-D 28k is located in the midbrain dopaminergic neurons which are resistent to MPTP-induced degeneration. Soc Neurosci Abstr 17:1275

    Google Scholar 

  • Marshak DR (1990) S100 beta as a neurotrophic factor. Prog Brain Res 86:169–181

    Google Scholar 

  • Martinez-Guijarro FJ, Soriano E, Rio JA del, Lopez-Garcia C (1991) Parvalbumin-immunoreactive neurons in the cerebral cortex of the lizard Podarcis hispanica. Brain Res 547:339–343

    Google Scholar 

  • Matsubara JA (1990) Calbindin D-28K immunoreactivity in the cat's superior olivary complex. Brain Res 508:353–357

    Google Scholar 

  • Mattson MP, Rychlik B, Chu C, Christakos S (1991) Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6:41–51

    Google Scholar 

  • McNemar CW, Horrocks WD Jr (1990) Europium(III) ion luminescence as a structural probe of parvalbumin isotypes. Biochem Biophys Acta 1040:229–236

    Google Scholar 

  • Menetrey D, Pommery J de, Thomasset M, Baimbridge KG (1992a) Calbindin-D28K (CaBP28k)-like immunoreactivity in ascending projections: I. Trigeminal nucleus caudalis and dorsal vagal projections. Eur J Neurosci 4:61–69

    Google Scholar 

  • Menetrey D, Pommery J de, Thomasset M, Baimbridge KG (1992b) Calbindin-D28K (CaBP28k)-like immunoreactivity in ascending projections, II. Spinal projections to brain stem and mesencephalic areas. Eur J Neurosci 4:70–76

    Google Scholar 

  • Messenger JP, Furness JB (1990) Projections of chemically-specified neurons in the guinea-pig colon. Arch Histol Cytol 53:467–495

    Google Scholar 

  • Messer NG, Kendrick-Jones J (1988) Molecular cloning and sequencing of the chicken smooth muscle myosin regulatory light chain. FEBS Lett 234:49–52

    Google Scholar 

  • Mize RR, Jeon CJ, Butler GD, Luo Q Emson PC (1991) The calcium binding protein calbindin-D 28K reveals subpopulations of projection and interneurons in the cat superior colliculus. J Comp Neurol 307:417–436

    Google Scholar 

  • Mody I, Reynolds JN, Salter MW, Carlen PL, MacDonald JF (1990) Kindling-induced epilepsy alters calcium currents in granule cells of rat hippocampal slices. Brain Res 531:88–94

    Google Scholar 

  • Moews PG, Kretzinger RH (1975) Refinement of the structure of carp muscle calcium-binding protein parvalbumin by model building and different Fourier analysis. J Mol Biol 91:201–228

    Google Scholar 

  • Moncrief ND, Kretsinger RH, Goodman M (1990) Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 30:522–562

    Google Scholar 

  • Morton AJ, Emson PC (1990) Expression of calbindin D-28K-like immunoreactivity in human SK-N-SH and SH-SY-5Y neuroblastoma cells. Brain Res 533:161–164

    Google Scholar 

  • Mudrick LA, Baimbridge KG (1989) Long-term structural changes in the rat hippocampal formation following cerebral ischemia. Brain Res 493:179–184

    Google Scholar 

  • Mulligan KA, VanBrederode JFM, Hendrickson AE (1989) The lectin Vicia villosa labels a distinct group, of GABAergic cells in macaque visual cortex. Vis Neurosci 2:63–72

    Google Scholar 

  • Murthy KK, Beach FG, Ragland WL (1984) Thymic hormones and lymphokines. In: Goldstein AL (ed) Plenum Press, New York, pp 375–382

    Google Scholar 

  • Mutus B, Karuppiah N, Sharma RK, MacManus JP (1985) The different stimulation of brain and heart cyclic-AMP phosphodiesterase by oncomodulin. Biochem Biophys Res Commun 131:500–506

    Google Scholar 

  • Nabors LB, Mize RR (1991) A unique neuronal organization in the cat pretectum revealed by antibodies to the calcium-binding protein calbindin-D 28K. J Neurosci 11:2460–2476

    Google Scholar 

  • Nitsch C, Scotti A, Sommacal A, Kalt G (1989) GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2(+)-binding protein parvalbumin. Neurosci Lett 105:263–268

    Google Scholar 

  • Nitsch R, Frotscher M (1991) Maintenance of peripheral dendrites of GABAergic neurons requires specific input. Brain Res 554:304–307

    Google Scholar 

  • Nitsch R, Bergmann I, Kuppers K, Mueller G, Frotscher M (1990a) Late appearance of parvalbumin-immunoreactivity in the development of GABAergic neurons in the rat hippocampus. Neurosci Lett 118:147–150

    Google Scholar 

  • Nitsch R, Leranth C, Frotscher M (1990b) Most somatostatin-immunoreactive neurons in the rat fascia dentata do not contain the calcium-binding protein parvalbumin. Brain Res 528:327–332

    Google Scholar 

  • Nitsch R, Soriano E, Frotscher M (1990c) The parvalbumin-containing nonpyramidal neurons in the rat hippocampus. Anat Embryol (Berl) 181:413–425

    Google Scholar 

  • Nitsch R, Bader S, Frotscher M (1992) Reorganization of input synapses of parvalbumin-containing neurons in the rat fascia dentata following entorhinal lesion. Neurosci Lett 135:33–36

    Google Scholar 

  • Nys Y, Mayel Afshar S, Bouillon R, Van Baelen H, Lawson DE (1989) Increases in calbindin D 28K mRNA in the uterus of the domestic fowl induced by sexual maturity and shell formation. Gen Comp Endocrinol 76:322–329

    Google Scholar 

  • Ohm TG, Müller H, Ulfig N, Braak E (1990) Glutamic-acid-decarboxylase-and parvalbumin-like-immunoreactive structures in the olfactory bulb of the human adult. J Comp Neurol 291:1–8

    Google Scholar 

  • Ohm TG, Müller H, Braak E (1991) Calbindin-D-28k-like immunoreactive structures in the olfactory bulb and the anterior olfactory nucleus of the human adult: distribution and cell typology-partial complementarity with parvalbumin. Neuroscience 42:823–840

    Google Scholar 

  • Ohshima T, Endo T, Onaya T (1991) Distribution of parvalbumin immunoreactivity in the human brain. J Neurol 238:320–322

    Google Scholar 

  • Ono T, Tuan RS (1991) Vitamin D and chick embryonic yolk calcium mobilization: identification and regulation of expression of vitamin D-dependent Ca2(+)-binding protein, calbindin-D28K, in the yolk sac. Dev Biol 144:167–176

    Google Scholar 

  • Opperman LA, Pettifor JM, Ross FP (1990a) Immunohistochemical localization of calbindins (28K and 9K) in the tissues of the baboon Papio ursinus. Anat Rec 228:425–430

    Google Scholar 

  • Opperman LA, Ross FP, Stein B, Hirsch G (1990b) Appearance during chick embryogenesis of vitamin D-dependent calcium-binding protein (calbindin-D28K). Bone Miner 9:1–8

    Google Scholar 

  • Palade GE, Palay SE (1954) Electron microscopic study of interneuronal and neuromuscular synapses. Anat Rec 118:335–336

    Google Scholar 

  • Palmisano WA, Henzl MT (1990) Partial nucleotide, sequence of the parvalbumin from chicken thymus designated “avian thymic hormone”. Biochem Biophys Res Commun 167:1286–1293

    Google Scholar 

  • Palmisano WA, Henzl MT (1991) Avian thymic hormone and chicken (muscle) parvalbumin are distinct proteins: isolation of a muscle parvalbumin cDNA fragment by PCR. Biochem Biophys Res Commun 176: 328–334

    Google Scholar 

  • Pansu D, Bellaton C, Roche C, Bronner F (1989) Theophylline inhibits transcellular Ca transport in intestine and Ca binding by CaBP. Am J Physiol 257:G935-G943

    Google Scholar 

  • Parmentier M (1989) The human calbindins: cDNA and gene cloning. Adv Exp Med Biol 255:233–240

    Google Scholar 

  • Parmentier M (1990a) Calbindin D28k is essentially located in the colonic part of the toad intestine. Biol Cell 68:43–49

    Google Scholar 

  • Parmentier M (1990b) Structure of the human cDNAs and genes coding for calbindin D28K and calretinin. Adv Exp Med Biol 269:27–34

    Google Scholar 

  • Parmentier M, Lefort A (1991) Structure of the human brain calcium-binding protein calretinin and its expression in bacteria. Eur J Biochem 196:79–85

    Google Scholar 

  • Parmentier M, Szpirer J, Levan G, Vassart G (1989) The human genes for calbindin 27 and 29 kDa proteins are located on chromosomes 8 and 16, respectively. Cytogenet Cell Genet 52:85–87

    Google Scholar 

  • Parmentier M, Passage E, Vassart G, Mattei MG (1991) The human calbindin D28k (CALB1) and calretinin (CALB2) genes are located at 8q21.3---q22.1 and 16q22---q23, respectively, suggesting a common duplication with the carbonic anhydrase isozyme loci. Cytogenet Cell Genet 57:41–43

    Google Scholar 

  • Pasteels B, Rogers J, Blachier F, Pochet R (1990) Calbindin and calretinin localization in retina from different species. Vis Neurosci 5:1–16

    Google Scholar 

  • Permyakov EA, Medvedkin VN, Mitin YV, Kretsinger RH (1991) Noncovalent complex between domain AB and domains CD*EF of parvalbumin. Biochim Biophys Acta 1076:67–70

    Google Scholar 

  • Perret C, Lomri N, Thomasset M (1989) Structure of the rat vitamin D-induced calbindin-D9K gene and evolution of the EF-hand calcium-binding protein family. Adv Exp Med Biol 255:241–250

    Google Scholar 

  • Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467

    Google Scholar 

  • Pfeiffer B, Norman AW, Hamprecht B (1989) Immunocytochemical characterization of neuron-rich primary cultures: calbindin D28k as marker of a neuronal subpopulation. Brain Res 479:120–128

    Google Scholar 

  • Philippe E, Droz B (1989) Calbindin-immunoreactive sensory neurons of dorsal root ganglion project to skeletal muscle in the chick. J Comp Neurol 283:153–160

    Google Scholar 

  • Pinol MR, Kägi U, Heizmann CW, Vogel B, Sequier JM, Haas W, Hunziker W (1990) Poly-and monoclonal antibodies against recombinant rat brain calbindin D-28K were produced to map its selective distribution in the central nervous system. J Neurochem 54:1827–1833

    Google Scholar 

  • Pochet R, Parmentier M, Lawson DEM, Pasteels JL (1985) Rat brain synthesizes two “vitamin D-dependent” calcium-binding proteins. Brain Res 345:251–256

    Google Scholar 

  • Pochet R, Blachier F, Malaisse W, Parmentier M, Pasteels B, Pohl V, Résibois A, Rogers J, Roman A (1989) Calbindin-D28 in mammalian brain, retina, and endocrine pancreas: immuno-histochemical comparison with calretinin. Adv Exp Med Biol 255:435–443

    Google Scholar 

  • Pochet R, Blachier F, Gangji V, Kielbaska V, Duee PH, Résibois A (1990) Calbindin D28k in mammalian intestinal absorptive cells: immunohistochemical evidence. Biol Cell 70:91–99

    Google Scholar 

  • Pochet R, Pasteels B, Seto-Ohshima A, Bastianelli E, Kitajima S, Van Eldik LJ (1991) Calmodulin and calbindin localization in retina from six vertebrate species. J Comp Neurol 314:750–762

    Google Scholar 

  • Puelles L, Sanchez MP, Spreafico R, Fairen A (1992) Prenatal development of calbindin immunoreactivity in the dorsal thalamus of the rat. Neuroscience 46:135–147

    Google Scholar 

  • Rall JA (1989) Relationship of isometric unexplained energy production to parvalbumin content in frog skeletal muscle. Prog Clin Biol Res 315:117–126

    Google Scholar 

  • Rami A, Lomri N, Bréhier A, Thomasset M, Rabié (1989) Effects of altered thyroid states and undernutrition on the calbindin-D 28k (calcium-binding protein) content of the hippocampal formation in the developing rat. Brain Res 485:20–28

    Google Scholar 

  • Rami A, Rabie A, Thomasset M, Kriegelstein J (1992) Calbindin-D28k and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res 31:89–95

    Google Scholar 

  • Rasmussen H (1989) The cycling of calcium as an intracellular messenger. Sci Am 261:66–73

    Google Scholar 

  • Rasmussen CD, Means AR (1989) Calmodulin, cell growth and gene expression. Trends Neurosci 12:433–438

    Google Scholar 

  • Rausell E, Jones EG (1991a) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–237

    Google Scholar 

  • Rausell E, Jones EG (1991b) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11:210–225

    Google Scholar 

  • Reisner PD, Christakos S, Vanaman TC (1992) In vitro enzyme activation with calbindin-D28k, the vitamin D-dependent 28 kDa calcium binding protein. FEBS Lett 297:127–131

    Google Scholar 

  • Résibois A, Rogers JH (1992) Calretinin in rat brain: an immuno-histochemical study. Neuroscience 46:101–134

    Google Scholar 

  • Résibois A, Blachier F, Rogers JH, Lawson DE, Pochet R (1990) Comparison between rat brain calbindin-and calretinin-immunoreactivities. Adv Exp Med Biol 269:211–214

    Google Scholar 

  • Résibois A, Rypens F, Pochet R (1991) Epithelial and neuronal calbindin in avian intestine. Cell Tissue Res 251:611–620

    Google Scholar 

  • Rhoten WB, Christakos S (1990) Cellular gene expression for calbindin-D28k in mouse kidney. Anat Rec 227:145–151

    Google Scholar 

  • Ribak CE, Nitsch R, Seress L (1990) Proportion of parvalbumin-positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation. J Comp Neurol 300:449–461

    Google Scholar 

  • Ritzler JM, Sawhney R, Vankessel AHMG, Grzeschik KH, Schinzel A, Berchtold MW (1992) The genes for the highly homologous Ca2+-binding proteins oncomodulin and parvalbumin are not linked in the human genome. Genomics 12:567–572

    Google Scholar 

  • Roberts RC, DiFiglia M (1990) Long-term survival of GABA-enkephalin-, NADPH-diaphorase-and calbindin-d28k-containing neurons in fetal striatal grafts. Brain Res 532:151–159

    Google Scholar 

  • Rodriguez Moldes I, Timmermans JP, Adriaensen D, De Groodt Lasseel MH, Scheuermann DW, Anadon R (1990a) Asymmetric distribution of calbindin-D28K in the ganglia habenulae of an elasmobranch fish. Anat Embryol (Berl) 181:389–391

    Google Scholar 

  • Rodriguez Moldes I, Timmermans JP, Adriaensen D, De Groodt Lasseel MH, Scheuermann DW, Anadon R (1990b) Immunohistochemical localization of calbindin-D28K in the brain of a cartilaginous fish, the dogfish (Scyliorhinus canicula L.). Acta Anat (Basel) 137:293–302

    Google Scholar 

  • Röhrenbeck J, Wässle H, Boycott BB (1989) Horizontal cells in the monkey retina: immunocytochemical staining with antibodies against calcium-binding proteins. Eur J Neurosci 1:407–420

    Google Scholar 

  • Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353

    Google Scholar 

  • Rogers JH (1989a) Immunoreactivity for calretinin and other calcium-binding proteins in cerebellum. Neuroscience 31:711–721

    Google Scholar 

  • Rogers JH (1989b) Two calcium-binding proteins mark many chick sensory neurons. Neuroscience 31:697–709

    Google Scholar 

  • Rogers JH (1992a) Immunohistochemical markers in rat cortex: colocalization of calretinin and calbindin-D28k with neuropeptides and GABA. Brain Res 587:147–157

    Google Scholar 

  • Rogers JH (1992b) Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res 587:203–210

    Google Scholar 

  • Rogers JH, Khan M, Ellis J (1990) Calretinin and other CaBPs in the nervous system. Adv Exp Med Biol 269:195–203

    Google Scholar 

  • Sahin M, Hockfield S (1990) Molecular identification of the Lugaro cell in the cat cerebellar cortex. J Comp Neurol 301:575–584

    Google Scholar 

  • Sanghera MK, German DC (1991) Calbindin-D 28k in the human hypothalamus: relationship to tyrosine hydroxylase (TH) immunoreactive neurons. Soc Neurosci Abstr 17:1260

    Google Scholar 

  • Sanna PP, Keyser KT, Battenberg E, Bloom PE (1990) Parvalbumin immunoreactivity in the rat retina. Neurosci Lett 118:136–139

    Google Scholar 

  • Sanna PP, Keyser KT, Deerink TJ, Ellisman MH, Karten HJ, Bloom FE (1992) Distribution and ontogeny of paravalbumin in the chicken retina. Neuroscience 47:745–751

    Google Scholar 

  • Sano M, Yokota T, Endo T, Tsukagoshi H (1990) A developmental change in the content of parvalbumin in normal and dystrophic mouse (mdx) muscle. J Neurol Sci 97:261–272

    Google Scholar 

  • Sarthy PV, Fu M (1989) Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization. J Comp Neurol 288:593–600

    Google Scholar 

  • Sasaki T, Tanokura M, Asaoka K (1990) The complete amino acid sequence of bullfrog (Rana catesbiana) parvalbumin pI4.97. FEBS Lett 268:249–251

    Google Scholar 

  • Satoh J, Tabira T, Sano M, Nakayama H, Tateishi J (1991) Parvalbumin-immunoreactive neurons in the human central nervous system are decreased in Alzheimer's disease. Acta Neuropathol (Berl) 81: 388–395

    Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206:700–702

    Google Scholar 

  • Scharfman HE, Schwartzkroin PA (1989) Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Science 246:257–260

    Google Scholar 

  • Schoffl F, Jockusch H (1990) Genetic mapping and physical characterization of parvalbumin genes. Int J Biochem 22:1211–1215

    Google Scholar 

  • Schwab C, Brückner G, Härtig W (1992) Parvalbumin and calbindin immunoreactivity in the rat brain: a double-immunolabelling method. Acta Histochem Suppl XLII:277–281

    Google Scholar 

  • Schwartz JH, Greenberg SM (1987) Molecular mechanism of memory: second messenger induced modifications of protein kinases in nerve cells. Annu Rev Neurosci 10:459–467

    Google Scholar 

  • Scotti AL, Nitsch C (1991) The perforant path in the seizure sensitive gerbil contains the Ca2+-binding protein parvalbumin. Exp Brain Res 85:137–143

    Google Scholar 

  • Scotti AL, Nitsch C (1992) Differential Ca2+ binding properties in the human cerebellar cortex: distribution of parvalbumin and calbindin D-28k immunoreactivity. Anat Embryol (Berl) 185:163–167

    Google Scholar 

  • Scripter J, Harrison L, Cusick CG, Weber JT (1991) Calbindin-D 28k and parvalbumin localization in the pretectal complex and adjacent visual structures of the squirrel monkey. Soc Neurosci Abstr 17:112

    Google Scholar 

  • Séquier JM, Hunziker W, Andressen C, Celio MR (1990) Calbindin D-28k protein and mRNA localization in the rat brain. Eur J Neurosci 2:1118–1126

    Google Scholar 

  • Serda RE, Henzl MT (1991) Metal ion-binding properties of avian thymic hormone. J Biol Chem 266:7291–7299

    Google Scholar 

  • Seress L, Gulyás AI, Freund TF (1991) Parvalbumin-and calbindin D28k-immunoreactive neurons in the hippocampal formation of the macaque monkeys. J Comp Neurol 313:162–177

    Google Scholar 

  • Seto-Ohshima A, Emson PC, Berchtold MW, Heizmann CW (1989) Localization of parvalbumin mRNA in rat brain by in situ hybridization histochemistry. Exp Brain Res 75:653–658

    Google Scholar 

  • Seto-Ohshima A, Aoki E, Semba R, Emson PC, Heizmann CW (1990a) Appearance of parvalbumin-specific immunoreactivity in the cerebral cortex and hippocampus of the developing rat and gerbil brain. Histochemistry 94:579–589

    Google Scholar 

  • Seto-Ohshima A, Aoki E, Semba R, Emson PC, Heizmann CW (1990b) Parvalbumin immunoreactivity in the central auditory system of the gerbil: a developmental study. Neurosci Lett 119:60–63

    Google Scholar 

  • Seto-Ohshima A, Aoki E, Omori A, Tada T, Mizutani A (1992) Parvalbumin-like immunoreactivity in the human central auditory system. Acta Histochem Cytochem 25:153–159

    Google Scholar 

  • Simonides WS, Hardeveld C van (1989) Identification and quantification in single muscle fibers of four isoforms of parvalbumin in the iliofibularis muscle of Xenopus laevis. Biochim Biophys Acta 998:137–144

    Google Scholar 

  • Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280:183–196

    Google Scholar 

  • Sloviter RS, Sollas AL, Barbaro NM, Laxer KD (1991) Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J Comp Neurol 308:381–396

    Google Scholar 

  • Sloviter RS, Valiquette G, Abrams GM, Ronk EC, Sollas AL, Paul LA, Neubort S (1989) Selective loss of hippocampal granule cells in the mature brain after adrenalectomy. Science 243:535–538

    Google Scholar 

  • Solbach S, Celio MR (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol (Berl) 184:103–124

    Google Scholar 

  • Sonnenberg JL, Frantz GD, Lee S, Heick A, Chu C, Tobin AJ, Christakos S (1991) Calcium binding protein (calbindin-D28k) and glutamate decarboxylase gene expression after kindling induced seizures. Brain Res Mol Brain Res 9:179–190

    Google Scholar 

  • Soriano E, Nitsch R, Frotscher M (1990) Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies. J Comp Neurol 293:1–25

    Google Scholar 

  • Spencer R, Charman M,Wilson PW, Lawson DEM (1978) The relationship between vitamin D-stimulated calcium transport and intestinal calcium-binding protein in the chicken. Biochem J 170:93–101

    Google Scholar 

  • Steinert PM, Roop DR (1988) Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 57:593–626

    Google Scholar 

  • Stichel CC, Kägi U, Heizmann CW (1986) Parvalbumin in cat brain: isolation, characterization, and localization. J Neurochem 47:46–53

    Google Scholar 

  • Stichel CC, Singer W, Heizmann CW, Norman AW (1987) Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study. J Comp Neurol 262:563–577

    Google Scholar 

  • Stichel CC, Singer W, Heizmann CW (1988) Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. J Comp Neurol 268:29–37

    Google Scholar 

  • Stryer L, Bourne HR (1986) G-proteins: a family of signal transducers. Annu Rev Cell Biol 2:391–420

    Google Scholar 

  • Szabo T, Libouban S, Denizot JP (1990) A well defined spinocerebellar system in the weakly electric teleost fish Gnathonemus petersii. A tracing and immunohistochemical study. Arch Ital Biol 128:229–247

    Google Scholar 

  • Tanokura M (1990) Heat capacity and entropy changes of the major isotype of the toad (Bufo) parvalbumin induced by calcíum binding. Eur J Biochem 188:23–28

    Google Scholar 

  • Thomasset M, Lomri N, L'horset F, Brehier A, Dupret JM, Perret C (1990) Structure, expression and control of calbindins-D. Ann Endocrinol (Paris) 51:108–111

    Google Scholar 

  • Tigges M, Tigges J (1991) Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation. Vis Neurosci 6:375–382

    Google Scholar 

  • Tilney MS, Tílney LG, Stephens RE, Merte C, Drenckhahn D, Cotanche DA, Bretscher A (1989) Preliminary biochemical characterization of the stereocilia and cuticular plate of hair cells of the chick cochlea. J Cell Biol 109:1711–1723

    Google Scholar 

  • Tinner R, Oertle M, Heizmann CW, Bosshard HR (1990) Ca2+ binding sites of carp parvalbumin recognized by monoclonal antibody. Cell Calcium 11:19–23

    Google Scholar 

  • Trevino CL, Palmisano WA, Birnbaum ER, Henzl MT (1990) Eu3+ luminescence studies of oncomodulin. The origin of the pH-dependent behavior. J Biol Chem 265:9694–9700

    Google Scholar 

  • VanBrederode JF, Mulligan KA, Hendrickson AE (1990) Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. J Comp Neurol 298:1–22

    Google Scholar 

  • VanBrederode JFM, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience 44:157–171

    Google Scholar 

  • Van Der Zee EA, De Jong GI, Strosberg AD, Luiten PGM (1991) Parvalbumin-positive neurons in rat dorsal hippocampus contain muscarinic acetylcholine receptors. Brain Res Bull 27:697–700

    Google Scholar 

  • Van Eldik LJ, Zimmer DB (1989) Mechanisms of action of the S-100 family of calcium modulated proteins. In: Gerday C, Bolis L, Gilles R (eds) Calcium and calcium binding proteins. Springer, Berlin Heidelberg New York, pp 114–127

    Google Scholar 

  • Van Heyningen V, Dorin J (1990) Possible role for two calcium-binding proteins of the S-100 family, co-expression in granulocytes and certain epithelia. Adv Exp Med Biol 296:139–143

    Google Scholar 

  • Verhaeghe J, Herck E van, Visser WJ, Suiker AM, Thomasset M, Einhorn TA, Faierman E, Bouillon R (1990) Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes 39:477–482

    Google Scholar 

  • Vonau M, Törk I (1991) Parvalbumin and calbindin immunoreactive neurons in epileptic and normal human hippocampal formation. Soc Neurosci Abstr 17:1253

    Google Scholar 

  • Waldvogel HJ, Faull RL, Williams MN, Dragunow M (1991) Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins. Brain Res 546:329–335

    Google Scholar 

  • Walters MR, Bruns ME, Carter RM, Riggle PC (1991) Vitamin D independence of small calcium-binding proteins in nonclassical target tissues. Am J Physiol 260:E794-E800

    Google Scholar 

  • Wassermann RH, Fullmer CS (1982) Vitamin D-induced calcium-binding protein. Calcium and cell function, vol II. Academic Press, New York, pp 175–216

    Google Scholar 

  • Wassermann RH, Taylor AN (1966) Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152:791–793

    Google Scholar 

  • Wassermann RH, Brindak ME, Buddle MM, Cai Q, Davis FC, Fullmer CS, Gilmour RF Jr, Hu C, Mykkanen HM, Tapper DN (1990) Recent studies on the biological actions of vitamin D on intestinal transport and the electrophysiology of peripheral nerve and cardiac muscle. Prog Clin Biol Res 332:99–126

    Google Scholar 

  • Webster WR, Batini C, Buisseret Delmas C, Compoint C, Guegan M, Thomasset M (1990) Colocalization of calbindin and GABA in medial nucleus of the trapezoid body of the rat. Neurosci Lett 111:252–257

    Google Scholar 

  • Weinman S (1991) Calcium-binding proteins: an overview. J Biol Buccale 19:90–98

    Google Scholar 

  • Weiss JH, Koh J, Baimbridge KG, Choi DW (1990) Cortical neurons containing somatostatin-or parvalbumin-like immunoreactivity are atypically vulnerable to excitotoxic injury in vitro. Neurology 40:1288–1292

    Google Scholar 

  • White CA, Chalupa LM (1991) Subgroup of alpha ganglion cells in the adult cat retina is immunoreactive for somatostatin. J Comp Neurol 304:1–13

    Google Scholar 

  • Wilkinson J (1980) Troponin-C from rabbit slow skeletal muscle and cardiac muscle is the product of a single gene. Eur J Biochem 103:179–218

    Google Scholar 

  • Williams SM, Goldman-Rakic PS, Leranth C (1992) The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex. J Comp Neurol 320:353–369

    Google Scholar 

  • Winsky L, Jacobowitz DM (1991) Radioimmunoassay of calretinin in the rat brain. Neurochem Int 19:517–522

    Google Scholar 

  • Winsky L, Nakata H, Martin BM, Jacobowitz DM (1989) Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein. Proc Natl Acad Sci USA 86:10139–10143

    Google Scholar 

  • Wong Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Google Scholar 

  • Wuenschell CW, Messer A, Tobin AJ (1990) Lurcher Purkinje cells express glutamic acid decarboxylase and calbindin mRNAs. J Neurosci Res 27:65–70

    Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307

    Google Scholar 

  • Yamagata K, Goto K, Guo CH, Kondo H, Miki N (1990) Visinin: a novel calcium-binding protein expressed in retinal cone cells. Neuron 4:469–476

    Google Scholar 

  • Yamaguchi T, Winsky L, Jacobowitz DM (1991) Calretinin, a neuronal calcium binding protein, inhibits phosphorylation of a 39 kDa synaptic membrane protein from rat brain cerebral cortex. Neurosci Lett 131:79–82

    Google Scholar 

  • Yamamoto T, Carr PA, Baimbridge KG, Nagy JI (1989) Parvalbumin-and calbindin D28k-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat. Brain Res Bull 23:493–508

    Google Scholar 

  • Yoshida S, Senba E, Kubota Y, Hagihira S, Yoshiya I, Emson PC, Tohyama M (1990) Calcium-binding proteins calbinding and parvalbumin in the superficial dorsal horn of the rat spinal cord. Neuroscience 37:839–848

    Google Scholar 

  • Youssoufian H, McAfee M, Kwiatkowski DJ (1990) Cloning and chromosomal localization of the human cytoskeletal α-actinin gene reveals linkage to the β-spectrin gene. Am J Hum Genet 47:62–71

    Google Scholar 

  • Zabel M, Schafer H (1989) Immunocytochemical localization of vitamin D-dependent calcium-binding protein (calbindin) in thyroid parafollicular cells of guinea pig. Bone Miner 7:107–112

    Google Scholar 

  • Zhang JH, Morita Y, Hironaka T, Emson PC, Tohyama M (1990) Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol 302:715–728

    Google Scholar 

  • Zhu YY, Takashi M, Miyake K, Kato K (1991) Sensitive enzyme immunoassay for human 28-kDa calbindin-D. Clinica Chimica Acta 201:183–192

    Google Scholar 

  • Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann Rev Biophy Biophy Chem 177:649–655

    Google Scholar 

  • Zot AS, Potter JD, Strauss WL (1987) Isolation and sequence of a cDNA clone for rabbit fast skeletal muscle troponin-C. Homology with calmodulin and parvalbumin. J Biol Chem 262:15418–15421

    Google Scholar 

  • Zühlke C, Schoffl F, Jockusch H, Simon D, Guenet JL (1989) cDNA sequence and chromosomal localization of the mouse parvalbumin gene, Pva. Genet Res 54:37–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andressen, C., Blümcke, I. & Celio, M.R. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 271, 181–208 (1993). https://doi.org/10.1007/BF00318606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318606

Key words

Navigation