Skip to main content
Log in

Characterization of V2O5/SiO2- and TiO2/SiO2-mixed gel catalysts by Raman spectroscopy

  • Part I
  • Photon Spectroscopy
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

The preparation of V2O5/SiO2 mixed gels by the sol-gel process provides a novel class of active catalysts for the selective catalytic reduction (SCR) of nitric oxide [1]. Raman spectroscopy is used to obtain information on the structure of these systems, in which the vanadia species are molecularly dispersed in an amorphous SiO2 matrix. This three-dimensionally linked network exhibits a high stability against thermal aggregation of the vanadia particles. At high vanadia contents small crystalline domains of V6O13 and V3O7 are detected in the Raman spectrum, in accordance with high resolution electron microscopy studies. The controlled grafting of vanadia layers onto the surface of oxidic supports is another attractive route to highly active SCR catalysts. The interaction of the carrier material with the immobilized vanadia layers can be tuned by using TiO2/SiO2 mixed oxide supports. Raman spectroscopy has been used to characterize monolayers of vanadia, which had been immobilized on a 20% TiO2/80% SiO2 mixed oxide from a vanadyl alkoxide precursor. Characteristic vibrations observed in the Raman spectrum, as well as UV-visible reflection data, indicate that the most abundant vanadia species on the surface consists of disordered polymeric arrays: the central vanadium ion is surrounded by one tightly bound vanadyl oxygen, four oxygen ions in the basal plane, and a distant sixth oxygen ligand in bridging position to the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiker A, Dollenmeier P, Glinski M, Reller A, Sharma VK (1988) J Catal 111:273–285

    Google Scholar 

  2. Baiker A, Dollenmeier P, Glinski M, Reller A (1987) Appl Catal 35:365–380

    Google Scholar 

  3. Wokaun A, Schraml M, Baiker A (1989) J Catal 116:595–599.

    Google Scholar 

  4. Walther KL, Schraml-Marth M, Wokaun A (1990) Catal Lett 4:327–338

    Google Scholar 

  5. Kijenski J, Baiker A, Glinski A, Dollenmeier P, Wokaun A (1986) J Catal 101:1–11.

    Google Scholar 

  6. Baiker A, Dollenmeier P, Glinski M, Reller A (1987) App Catal 35:351–364

    Google Scholar 

  7. Schraml M, Fluhr W, Wokaun A, Baiker A (1989) Ber Bunsenges Phys Chem 93:852–857

    Google Scholar 

  8. Sharma VK, Wokaun A, Baiker A (1986) J Phys Chem 90:2715–2718.

    Google Scholar 

  9. Baiker A, Glinski A, Kijenski J, Sharma VK, Wokaun A (1986) J Phys Chem 90:4217–4218

    Google Scholar 

  10. Cristiani C, Forzatti P, Busca G (1989) J Catal 116:586–589

    Google Scholar 

  11. Le Costumer LR, Taouk B, Le Meur M, Payen E, Guelton M, Grimblot J (1988) J Phys Chem 92:1230–1235

    Google Scholar 

  12. Gilson TR, Bizri OF, Cheetham N (1973) J Chem Soc Dalton Trans, pp 291–294

  13. Beattie IR, Gilson TR (1969) J Chem Soc A:2322–2327

    Google Scholar 

  14. Griffith WP, Wickins TD (1966) J Chem Soc A:1087–1090

    Google Scholar 

  15. Griffith WP, Lesniak JB (1969) J Chem Soc A:1066–1071

    Google Scholar 

  16. Onodera S, Ikegami Y (1980) Inorg Chem 19:615–618

    Google Scholar 

  17. Roozeboom F, Medema J, Gellings PJ (1978) Z Phys Chem 111:215–224

    Google Scholar 

  18. Roozeboom F, Mittelmeijer-Hazeleger MC, Moulijn JA, Medema J, de Beer VHJ, Gellings PJ (1980) J Phys Chem 84:2783–2791

    Google Scholar 

  19. Wachs IF, Saleh RY, Chan SS, Chersich CC (1985) Appl Catal 15:339–352

    Google Scholar 

  20. Bond GC, Brückman K (1981) Faraday Discuss Chem Soc 72:235–246.

    Google Scholar 

  21. Bond GC, Zurita JP, Flamerz S, Gellings JP, Bosch H, van Ommen JG, Kip BJ (1986) Appl Catal 22:361–378

    Google Scholar 

  22. Busca G, Lavalley GC (1986) Spectrochim Acta 42A:443–445

    Google Scholar 

  23. Miyata H, Fujii K, Ono T, Kubokawa Y, Ohno T, Hatayama F (1987) J Chem Soc Faraday Trans I 83:675–685

    Google Scholar 

  24. Bystrom A, Wilhelmi KA, Brotzen O (1950) Acta Chem Scand 4:1119–1130.

    Google Scholar 

  25. Bachmann HG, Ahmed FR, Barnes WH (1961) Z Kristallogr 115:110–131

    Google Scholar 

  26. Iwaki T, Miura M (1971) Bull Chem Soc Jpn 44:1754–1758

    Google Scholar 

  27. Flynn CM, Pope MT (1970) J Am Chem Soc 92:85–90

    Google Scholar 

  28. Schraml-Marth M, Wokaun A, Baiker A (1990) J Catal 124:86–96

    Google Scholar 

  29. Busca G, Centi G, Marchetti L, Trifiro F (1986) Langmuir 2:568–577

    Google Scholar 

  30. Hanke W, Bienert R, Jerschkewitz HG (1975) Z Anorg. Allg Chem 414:109–129

    Google Scholar 

  31. Beattie IR, Gilson TR (1968) Proc Roy Soc A 307:407–429

    Google Scholar 

  32. Fabbri G, Baraldi P (1972) Anal Chem 44:1325–1326.

    Google Scholar 

  33. Frederickson LD, Hansen DM (1963) Anal Chem 35:818–827

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schraml-Marth, M., Wokaun, A. & Baiker, A. Characterization of V2O5/SiO2- and TiO2/SiO2-mixed gel catalysts by Raman spectroscopy. Fresenius J Anal Chem 341, 87–91 (1991). https://doi.org/10.1007/BF00322114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322114

Keywords

Navigation