Skip to main content
Log in

Temperature dependence of the luminescence of TiO2 powder

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The temperature dependence of the luminescence quantum yield of powdered titaniumdioxide in vacuum, nitrogen, and water vapor, respectively, was measured in the temperature range 300 K to 800 K. The observed luminescence is attributed to luminescence from surface states. We find that the luminescence is thermally quenched, as predicted by a simple model. Furthermore, the luminescence is shifted towards shorter wavelengths with increasing temperature. We also observed that the luminescence in vacuum is weakly quenched in the presence of nitrogen or water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.D. Archer, J.R. Bolton: Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J. Phys. Chem. 94, 8028 (1990)

    Google Scholar 

  2. G. Smestad, H. Ries: Luminescence and current-voltage characteristics of solar cells and optoelectronic devices. Sol. Energy Materials and Solar Cells 25, 51 (1992)

    Google Scholar 

  3. G.J. Meyer, G.C. Lisensky, A.B. Ellis: Evidence for aduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in presence of amines. J. Am. Chem. Soc. 110, 4914 (1988)

    Google Scholar 

  4. L.K. Leung, N.J. Komplin, A.B. Ellis, N. Tabatabaie: Photoluminescence studies of silver-exchanged cadmium selenide crytals. Modification of a chemical sensor for aniline derivatives by heterojunction formation. J. Phys. Chem. 95, 5918 (1991)

    Google Scholar 

  5. M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, M.A. Fox: Photolysis on native and platinum-loaded TiO2 and ZnO catalysts: Origin of different reactivities on wet and dry metal oxides. Bull. Chem. Soc. Jpn. 64, 543 (1991)

    Google Scholar 

  6. A. Cox: Photochemical aspects of solar energy conversion. Photochemistry 22, 505 (1992)

    Google Scholar 

  7. T. Inoe, A. Fujishima, S. Konishi, K. Honda: Photocatalytic reduction of carbon dixoide in aqueous suspensions of semiconductor powders. Nature 277, 637 (1979)

    Google Scholar 

  8. B. O'Regan, M. Grätzel: A low-cow, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).

    Google Scholar 

  9. Y. Nakato, A. Ohta, H. Tsubomura: Photoluminescence and mechanism of oxygen photoevolution reaction in single crystal n-TiO2 electrodes. Proc. Symposium on Photochemistry and Electrosynthesis on Semiconducting Materials. D.S. Ginley (ed.) (The Electrochem. Soc., Pennington 1988) pp. 382

    Google Scholar 

  10. B. Ohtani, S. Zhang, J. Handa, H. Kajiwara, S. Nishimoto, T. Kagiya: Photocatalytic activity of titanium(IV) oxide prepared from titanium(IV) tetra-2-propoxide: reaction in aqueous silver salt solutions. J. Photochem. Photobiol. A 64, 223 (1992)

    Google Scholar 

  11. K. Sayama, H. Arakawa: Remarkable effect of Na2CO3 addition on photodecomposition of liquid water into H2 and O2 from suspension of semiconductor powder loaded with various metals. Chem. Lett. 2, 253 (1992)

    Google Scholar 

  12. G.N. Schrauzer, T.D. Guth: Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99, 7189 (1977)

    Google Scholar 

  13. M.M. Khader, N.N. Lichtin, G.H. Vurens, M. Salmeron, G.A. Somorjai: Photoassisted catalytic dissociation of H2O and reduction of N2 to NH3 on partially reduced Fe2O3. Langmuir 3, 303 (1987)

    Google Scholar 

  14. M.K. Nazeeruddinn, P. Liska, J. Moser, N. Vlachopoulos, M. Grätzel: Conversion of light into electricity with trinuclear ruthenium complexes adsorbed on textured TiO2 films. Helv. Chim. Acta 73, 1788 (1990)

    Google Scholar 

  15. T.S. Dzhabiev, A.M. Uskov: Photocatalytic reduction of carbon dioxide in suspensions of semiconducting materials. Russ. J. Phys. Chem. 65, 544 (1991)

    Google Scholar 

  16. M. Anpo, M. Tomonari, M.A. Fox: In situ photoluminescence of TiO2 as a probe of photocatalytic reactions. J. Phys. Chem. 93, 7300 (1989)

    Google Scholar 

  17. D.M. Blake, J. Webb, C. Turchi, K. Magrini: Kinetic and mechanistic overview of TiO2-photocatalysed oxidation reactions in aqueous solution. Sol. Energy Materials 24, 584 (1991)

    Google Scholar 

  18. S.K. Poznyak, V.V. Sviridov, A.I. Kulak, M.P. Samtsov: Photoluminescence and electroluminescence at the TiO2-electrolyte interface. J. Electroanal. Chem. 340, 73 (1992)

    Google Scholar 

  19. K. Hashimoto, M. Hiramoto, T. Sakata: Photoluminescence of TiO2 powder and its relation with photocatalytic reactions. In Proc. Symp. on Photoelectrochemistry and Photoelectrosynthesis on Semiconducting Materials, 88-14 (The Electrochem. Society, Pennington 1988) pp. 395

    Google Scholar 

  20. R.N. Noufi, P.A. Kohl, S.N. Frank, A. Bard: Semiconductor electrodes XIV: Electrochemistry and electroluminescence at n-type TiO2 in aqueous solutions. J. Electrochem. Soc. 125, 246 (1978)

    Google Scholar 

  21. G. Calzaferri, K. Hädener, J. Li: Quasi-reversible silver zeolite electrode prepared by photochemical modification. J. Chem. Soc., Chem. Comm. 9, 653 (1991)

    Google Scholar 

  22. I. Kamber: In Situ Lumineszenzspektroskopie an Cu+ Zeolithen. Dissertation, University of Berne (1992)

  23. B.I. Stepanov, V.P. Gribkovskii: Theory of Luminescence (Iliffe Books Ltd., London 1968) Chap. 5, pp. 300

    Google Scholar 

  24. Y.B. Bard, D.F. Heller: Relationships between the absorption and emission of light in multilevel systems. Phys. Rev. A 38, 1885 (1988)

    Google Scholar 

  25. B. Di Bartolo: Advances in Nonradiative Processes in Solids, NATO ASI Series, Series B: Physics, Vol. 249 (Plenum, New York 1991)

    Google Scholar 

  26. R.W. Collins, W. Paul: Model for the temperature dependence of photoluminescence in a-Si:H and related materials. Phys. Rev. B 25, 5257 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forss, L., Schubnell, M. Temperature dependence of the luminescence of TiO2 powder. Appl. Phys. B 56, 363–366 (1993). https://doi.org/10.1007/BF00324533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324533

PACS

Navigation