Skip to main content
Log in

Shock waves generated by confined XeCl excimer laser ablation of polyimide

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate shock waves generated by excimer laser ablation of sheet polyimide confined in water. The velocities of the ablation-induced pressure waves in the water are determined by an optical probe system. We measure supersonic velocities up to a few hundred microns away from the irradiated surface, indicating the formation of shock waves. We use these velocities to calculate the corresponding pressures. They are already in the kbar range at fluences comparable to the threshold of ablation. The shock pressure varies as the square root of the incident laser fluence, a behavior that is explained by the rapid heating of the confined gaseous products of ablation.

The initially planar shock waves propagate, become spherical, and decay within a few hundred microns in the surrounding water to acoustic waves. During spherical expansion the shock pressure drops as the inverse of the square of the propagation distance.

The shock waves generated may be relevant in explaining photoacoustic damage observed in biological tissue after excimer-ablation at corresponding irradiances. They may also be important in material processing applications of excimer laser ablation of polymers as they can lead to plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Watanabe, T. Flotte, D. McAucliffe, S. Jacques: J. Invest. Dermatol. 90, 761 (1988)

    Google Scholar 

  2. J. Marshall, S. Trokel, S. Rothery, H. Schubert: Ophthalmol. 92, 749 (1985)

    Google Scholar 

  3. E. Dehm, C. Puliafito, C. Adler, R. Steinert: Arch. Ophthalmol. 104, 1364 (1986)

    Google Scholar 

  4. Y. Yashima, D. McAucliffe, S. Jacques, T. Flotte: Lasers Surg. Med. 11, 62 (1991)

    Google Scholar 

  5. P. Harris, H. Presles: J. Chem. Phys. 77, 5157 (1982)

    Google Scholar 

  6. F. Cross, R. Al-Dhahir, P. Dyer: J. Appl. Phys. 64, 2194 (1988)

    Google Scholar 

  7. P. Dyer, R. Srinivasan: Appl. Phys. Lett. 48, 445 (1986)

    Google Scholar 

  8. H. Philipp, H. Cole, Y. Liu, T. Sitnik: Appl. Phys. Lett. 48, 192 (1986)

    Google Scholar 

  9. J. Brannon, J. Lankard, A. Baise, F. Burns, J. Kaufmann: J. Appl. Phys. 58, 2036 (1985)

    Google Scholar 

  10. C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler: Ophthalmol. 92, 741 (1985)

    Google Scholar 

  11. R. Taylor, D. Singleton, G. Paraskevopoulos: Appl. Phys. Lett. 50, 1779 (1987)

    Google Scholar 

  12. The risetime of our laser pulses is 4 ns. They show an equally fast initial fall that is followed by a pedestal. The intensity is larger than 10% of the peak during a time τ=20 ns that is taken as the pulse duration

  13. P. Teng, N. Nishioka, R. Anderson, T. Deutsch: IEEE J. QE-23, 1845 (1987)

    Google Scholar 

  14. A.G. Doukas, A.D. Zweig, J.K. Frisoli, R. Birngruber, T.F. Deutsch: Appl. Phys. B (in press)

  15. P. Harris, H. Presles: J. Chem. Phys. 74, 6864 (1981)

    Google Scholar 

  16. R. Srinivasan, K. Casey, B. Braren, M. Yeh: J. Appl. Phys. 67, 1604 (1990)

    Google Scholar 

  17. P. Dyer, J. Sidhu: Appl. Phys. 57, 1420 (1985)

    Google Scholar 

  18. T.F. Deutsch, M. Geis: J. Appl. Phys. 54, 7201 (1983)

    Google Scholar 

  19. J. Andrew, P. Dyer, D. Forster, P. Key: Appl. Phys. Lett. 43, 717 (1983)

    Google Scholar 

  20. R. Griffin, B. Justus, A. Campillo, L. Goldberg: J. Appl. Phys. 59, 1968 (1986)

    Google Scholar 

  21. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont: J. Appl. Phys. 68, 775 (1990)

    Google Scholar 

  22. The adiabatic sound speed of polyimide was calculated from PV T-data supplied by the manufacturer. Note that this calculated value, c 0=2165m/s, is but a first approximation, as sheet polyimide is not an isotropic material

  23. D. Blackstock: In: American Institute of Physics Handbook, ed. by D. Gray (American Institute of Physics, McGraw-Hill, New York 1982) pp. 3–190

    Google Scholar 

  24. G. Herzberg: Molecular spectra and molecular structure II. Infrared and Raman spectra of polyatomic molecules (van Nostrand, Princeton, NJ 1968) pp. 501–519

    Google Scholar 

  25. R. Srinivasan, B. Braren, R. Dreyfus: J. Appl. Phys. 61, 372 (1987)

    Google Scholar 

  26. J. Yeh: J. Vac. Sci. A 4, 653 (1986)

    Google Scholar 

  27. S. Lazare, V. Granier: J. Appl. Phys. 63, 2110 (1988)

    Google Scholar 

  28. S. Küper, J. Brannon: In: Technical Digest, Conference on Lasers and Electro-Optics, Paper CFF2 (Optical Society of America, Washington D.C. 1991) pp. 506–508

    Google Scholar 

  29. B. Nikolaus: In: Technical Digest, Conference on Lasers and Electro-Optics, pages Paper TUJ2, (Optical Society of America, San Francisco, SA 1986) pp. 88–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweig, A.D., Deutsch, T.F. Shock waves generated by confined XeCl excimer laser ablation of polyimide. Appl. Phys. B 54, 76–82 (1992). https://doi.org/10.1007/BF00331737

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331737

PACS

Navigation