Skip to main content
Log in

Movement patterns of Cetonia beetles (Scarabaeidae) among flowering Viburnum opulus (Caprifoliaceae)

Option for long-distance pollen dispersal in a temperate shrub

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The movement patterns of flower-visiting Cetonia (Coleoptera, Scarabaeidae) were studied in central Sweden over 4 years, providing the first quantitative study of beetle pollination behaviour conducted in a temperate zone. The beetles were marked individually and tracked throughout their visits to Viburnum opulus L. (Caprifoliaceae), a partly beetle-pollinated shrub displaying large umbel-like, creamy-white blossoms. Beetle abundance differed greatly between study years. Of marked beetles observed on V. opulus flowers, an average of 26% returned each year. The beetles performed frequent inter-plant flights, and showed fidelity to particular V. opulus individuals at the study site. Furthermore, they preferred V. opulus to other plants flowering concomitantly and showed considerable constancy in this habit. Movements were mostly between individuals from unshaded locations with high inflorescence and flower number. Normally, the beetles flew on average about 4 times the horizontal nearest-neighbour distance between flowering V. opulus (c. 18 m). From these observations it is concluded that Cetonia beetles are powerful long-distance dispersal agents for V. opulus pollen, perhaps leading to an enhanced gene flow not possible with the plant's other pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antlfinger AE (1982) Genetic neighborhood structure of the salt marsh composite, Borrichia frutescens. J Hered 73: 128–132

    Google Scholar 

  • Bawa KS (1983)_Patterns of flowering in tropical plants. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp 394–410

    Google Scholar 

  • Beattie AJ (1976) Plant dispersion, pollination and gene flow in Viola. Oecologia 25: 291–300

    Google Scholar 

  • Faegri K, Van Der Pijl (1980) The principles of pollination biology, 3rd edn. Pergamon, London

    Google Scholar 

  • Ferguson IK (1976) Viburnum L. In: Tutin TG et al. (eds), Flora Europea 4. Cambridge University Press, Cambridge, p 45

    Google Scholar 

  • Fuchs G-V (1974) Die Gewinnung von Pollen und Nektar bei Käfern. Natur Mus 104: 45–54

    Google Scholar 

  • Heinrich B (1976) The foraging specializations of individual bumble-bees. Ecol Monogr 46: 105–128

    Google Scholar 

  • Heinrich B (1976) “Majoring” and “minoring” by foraging bumble-bees, Bombus vagans an experimental analysis. Ecology 60: 245–255

    Google Scholar 

  • Horion AD (1958) Faunistik der Mitteleuropäischen Käfer. Band VI: Lamellicornia, Aug Feyel, Überlingen Bodensee

  • Hultén E (ed) (1958) Vår svenska flora in färg. AB Svensk Litteratur, Stockholm

    Google Scholar 

  • Hultén E, Fries M (1986) Atlas of North European vascular plants north of the tropic of cancer. Koeltz Scientific Books. Fulda

    Google Scholar 

  • Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171: 203–205

    Google Scholar 

  • Jennersten O (1980) Nectar source plant selection and distribution pattern in an autumn population of Gonopteryx rhamni (Lep. Pieridae)_(In Swedish with English summary). Entomol Tidskr 101: 109–114

    Google Scholar 

  • Jessop L (1986) In: Barnard PC, Askew RR (eds) Handbooks for the identification of British insects. Vol. 5. Part 11. Dung beetles and chafers. Coleoptera: Scarabaeoidea. London

  • Knoll F (1956) Die Biologie der Blüte. Springer, Berlin

    Google Scholar 

  • Knuth P (1898) Handbuch der Blütenbiologie. Bd II: 1. W. Engelman, Leipzig

    Google Scholar 

  • Kugler H (1955) Einführung in die Blütenökologie. Gustav Fisher, Stuttgart

    Google Scholar 

  • Landin BO (1957) Skalbaggar. Lamellicornia. Svensk insektsfauna vol 9. Entomologiska Föreningen, Stockholm, pp 123–126

  • Levin DA, Kerster HW (1968) Local gene dispersal in Phlox. Evolution 22: 130–139

    Google Scholar 

  • Levin DA, Kerster HW (1969) The dependence of bee-mediated pollen and gene dispersal upon plant density. Evolution 23: 566–571

    Google Scholar 

  • Linhart YB, Mendenhall JA (1977) Pollen dispersal by hawkmoths in a Lindenia rivalis Benth population in Belize. Biotropica 9: 143

    Google Scholar 

  • Medvedev SI (1964) Fauna SSSR vol 10 (5) (in Russian) Moscow pp 1–375

  • Murawski DA (1987) Floral resource variation, pollinator response, and potential pollen flow in Psiguria warscewiczii. Ecology 68: 1273–1282

    Google Scholar 

  • Murawski DA, Gilbert LE (1986) Pollen flow in Psiguria warscewiczii: A comparison of Heliconius butterflies and hummingbirds. Oecologia 68: 161–167

    Google Scholar 

  • Nilson LA, Rabakonandrianina E, Petterson B (1992) Exact tracking of pollen transfer and mating in plants. Nature 360: 666–668

    Google Scholar 

  • Olesen JM, Warncke E (1989) Temporal changes in pollenflow and neighbourhood structure in a population of Saxifraga hirculus L. Oecologia 79: 205–211

    Google Scholar 

  • Pellmyr O (1985) Flower constancy of an anthophilous beetle, Byturus ochraceus (Coleoptera: Byturidae). Coleopt Bull. 39: 109–139

    Google Scholar 

  • Pyke GH (1978) Optimal foraging: Movement patterns of bumble-bees between inflorescences. Theor Pop Biol 13: 72–98

    Google Scholar 

  • Pyke GH (1981) Optimal foraging in hummingbirds: Rule of movement between inflorescences. Anim Behav 29: 889–896

    Google Scholar 

  • Schmitt J (1980) Pollinator foraging behavior and gene dispersal in Senecio (Compositae) Evolution 34: 934–943

    Google Scholar 

  • Schmitt J (1983) Density-dependent pollinator foraging, flowering and temporal pollen dispersal patterns in Linanthus bicolor. Evolution 37: 1247–1257

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. WH Freeman, New York

    Google Scholar 

  • Thomson JD, Maddison WP, Plowright RC (1982) Behavior of bumble bee pollinators of Aralia hispida Vent. (Araliaceae). Oecologia 54: 326–336

    Google Scholar 

  • Waddington KD (1979) Flight patterns of three species of sweat bees (Halictidae) foraging at Covolvulus arvensis. J Kansas Entomol Soc 52: 751–758

    Google Scholar 

  • Waddington KD (1981) Factors influencing pollen flow in bumblebee-pollinated Delphinium virescens. Oikos 37: 153–159

    Google Scholar 

  • Waser NM (1982) A comparison of distances flown by different visitors to flowers of the same species. Oecologia 55: 251–257

    Google Scholar 

  • Widén B, Widén M (1990) Pollen limitation and distance-dependent fecundity in females of the clonal gynodioecious herb Glechoma hederacea (Lamiaceae). Oecologia 83: 191–196

    Google Scholar 

  • Willemstein SC (1978) Lists of flower visited by Cetoniidae (Coleoptera) and Central European Cerambycinae and Lepturinae (Col., Cerambycidae). Based on historical and pollen analytical research. Rijksherbarium, Leiden

    Google Scholar 

  • Young HJ (1986) Beetle pollination of Dieffenbachia longispatha (Araceae). Am J Bot 73: 931–944

    Google Scholar 

  • Young HJ (1988a) Neighborhood size in a beetle pollinated tropical aroid: effects of low density and synchronous flowering. Oecologia 76: 461–466

    Google Scholar 

  • Young HJ (1988b) Differential importance of beetle species pollinating Dieffenbachia longispatha (Araceae). Ecology 69: 832–844

    Google Scholar 

  • Zimmerman M (1979) Optimal foraging: a case for random movement. Oecologia 43: 261–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englund, R. Movement patterns of Cetonia beetles (Scarabaeidae) among flowering Viburnum opulus (Caprifoliaceae). Oecologia 94, 295–302 (1993). https://doi.org/10.1007/BF00341330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341330

Key words

Navigation