Skip to main content
Log in

Chemical reactions of mercury in combustion flue gases

  • Published:
Water Air & Soil Pollution Aims and scope Submit manuscript

Abstract

Atmospheric Hg is present in different physical and chemical forms, which determine its atmospheric transformation and transport capacities. The chemistry of Hg in flue gases is thus of importance for the deposition pattern around point source emissions. In order to apply Hg cleaning methods in flue gases its speciation is also of importance. To investigate this under realistic conditions, a 17 kW propane fired flue gas generator was used, while the kinetics of specific Hg reactions were investigated in a continuous flow reactor. Elemental Hg is readily oxidized by Cl2 and HCl both at room and at elevated temperatures (up to 900 °C) but not by NH3, N2O, SO2 or H2S. It reacts with O2 if a catalyst, such as activated carbon, is present. A slow reaction between Hg and NO2 has also been noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall, B., Lindqvist, O. and Ljungström, E.: 1990, Environ. Sci. & Technol. 24, 108.

    Article  CAS  Google Scholar 

  2. Lindqvist, O. and Schager P.: 1990, VDI Berichte 838, 401.

    Google Scholar 

  3. Bergström, J. G. T.: 1986, Waste Management & Research 4, 57.

    Article  Google Scholar 

  4. Vogg, H., Braun, H., Metzger, M. and Schneider, J.: 1987, Chemospere 16, 21.

    Google Scholar 

  5. Lodenius, M. and Laaksovirte, K.: 1979, Ann. Bot. Finnici 16, 7.

    CAS  Google Scholar 

  6. Lindqvist, O. and Rodhe, H.: 1985, Tellus 37B, 136.

    Article  CAS  Google Scholar 

  7. Lindqvist, O. : 1988, “Mercury Emissions from Swedish Waste Incineration Plants” Report OOK 88:09, ISSN 0283-8575 1–15 (In Swedish).

  8. Mitra, S. : 1986, “Hg in the Ecosystem.”, ISBN 0-87849-529-0, Trans. Tech. Publications Ltd. Switzerland 1–327.

  9. P'yankov, V.A.: 1949, Journal of General Chemistry of USSR. 19, 187.

    Google Scholar 

  10. Menke, R. and Wallis, G.: 1980, Am. Ind. Hyg. Assoc. J. 41, 120.

    CAS  Google Scholar 

  11. Medhekar, A.K., Rokni, M., Trainor, D.W. and Jacob, J.H.: 1979, Chemical Physics Letters 65, 600.

    Article  CAS  Google Scholar 

  12. Cooper, D.: 1989, “Some Aspects of NOX Control in Fluidized Bed Combustion”, Thesis, Department of Inorganic Chemistry GU/CTH, Göteborg, Sweden.

    Google Scholar 

  13. Rosser, W.A. and Wise H.: 1965, J. Chem. Phys. 24, 493.

    Article  Google Scholar 

  14. Freeman, E.S. and Gordon S.: 1956, J. Amer. Chem. Soc. 78, 1813.

    Article  CAS  Google Scholar 

  15. Weast, R.C. : 1977–78, “CRC Handbook of Chemistry and Physics” 58th Edition.

  16. Taylor, G.B. and Hulett, G.A.: 1913, J. Phys. Chem. 17, 565.

    Article  CAS  Google Scholar 

  17. Braune, H. and Knoke, S.: 1931, Z. Physik. Chem. 152, 409.

    CAS  Google Scholar 

  18. Oza, T.M. and Ezekiel, E.I.: 1962, Sci. & Indus. Res. 21B, 536.

    CAS  Google Scholar 

  19. Oza, T.M., Jha, J.C. and Ezekiel, E.I.: 1968, J. Indian Chem. Soc. 1, 420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B., Schager, P. & Lindqvist, O. Chemical reactions of mercury in combustion flue gases. Water, Air, and Soil Pollution 56, 3–14 (1991). https://doi.org/10.1007/BF00342256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00342256

Keywords

Navigation