Skip to main content
Log in

Flow simulation and high performance computing

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Flow simulation is a computational tool for exploring science and technology involving flow applications. It can provide cost-effective alternatives or complements to laboratory experiments, field tests and prototyping. Flow simulation relies heavily on high performance computing (HPC). We view HPC as having two major components. One is advanced algorithms capable of accurately simulating complex, real-world problems. The other is advanced computer hardware and networking with sufficient power, memory and bandwidth to execute those simulations. While HPC enables flow simulation, flow simulation motivates development of novel HPC techniques. This paper focuses on demonstrating that flow simulation has come a long way and is being applied to many complex, real-world problems in different fields of engineering and applied sciences, particularly in aerospace engineering and applied fluid mechanics. Flow simulation has come a long way because HPC has come a long way. This paper also provides a brief review of some of the recently-developed HPC methods and tools that has played a major role in bringing flow simulation where it is today. A number of 3D flow simulations are presented in this paper as examples of the level of computational capability reached with recent HPC methods and hardware. These examples are, flow around a fighter aircraft, flow around two trains passing in a tunnel, large ram-air parachutes, flow over hydraulic structures, contaminant dispersion in a model subway station, airflow past an automobile, multiple spheres falling in a liquid-filled tube, and dynamics of a paratrooper jumping from a cargo aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, S.; Ramm, G.; Faltin, G. 1984: Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper Series, 840300

  • Aliabadi, S.; Ray, S.E.; Tezduyar, T.E. 1993: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Computational Mechanics, 11: 300–312

    Article  MATH  Google Scholar 

  • Aliabadi, S.; Tezduyar, T.E. 1993: Space-time finite element computation of compressible flows involving moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering, 107 (1–2): 209–224

    Article  MATH  Google Scholar 

  • Aliabadi, S. K.; Tezduyar, T. E. 1995: Parallel fluid dynamics computations in aerospace applications. International Journal for Numerical Methods in Fluids, 21: 783–805

    Article  MATH  MathSciNet  Google Scholar 

  • Baker, T. J. 1989: Developments and trends in three-dimensional mesh generation. Applied Numerical Mathematics, 5: 275–304

    Article  MATH  MathSciNet  Google Scholar 

  • Barth, T. J. 1992: Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. In Special Course on Unstructured Grid Methods for Advection Dominated Flows, pages 6-1–6-61. Advisory Group for Aerospace Research and Development

  • Behr, M.; Johnson, A.; Kennedy, J.; Mittal, S.; Tezduyar, T. E. 1993: Computation of incompressible flows with implicit finite element implementations on the Connection Machine. Computer Methods in Applied Mechanics and Engineering, 108: 99–118

    Article  MATH  MathSciNet  Google Scholar 

  • Behr, M.; Tezduyar, T. E. 1994: Finite element solution strategies for large-scale flow simulations. Computer Methods in Applied Mechanics and Engineering, 112: 3–24

    Article  MATH  MathSciNet  Google Scholar 

  • Bern, M.; Eppstein, D. 1992: Mesh generation and optimal triangulation. Technical report, Xerox Corporation, Palo Alto Research Center

  • Borouchaki, H.; Hecht, F.; Saltel, E.; George, P. L. 1995: Reasonably efficient delaunay based mesh generator in 3 dimensions. In Proceedings 4th International Meshing Roundtable, pages 3–14, Sandia National Laboratories

  • Brooks, A. N.; Hughes, T. J. R. 1982: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  • Cogotti, A. 1983: Aerodynamic characteristics of car wheels. In Technological Advances in Vehicle Design Series, SP3; Impact of Aerodynamics on Vehicle Design, pages 173–196, International Journal of Vehicle Design

  • de Sampaio, P. A. B.; Lyra, P. R. M.; Morgan, K.; Weatherill, N. P. 1993: Petrov-Galerkin solutions of the incompressible Navier-Stokes equations in primitive variables with adaptive remeshing. Computer Methods in Applied Mechanics and Engineering 106: 143–178

    Article  MATH  Google Scholar 

  • Donea, J. 1984: A Taylor-Galerkin method for convective transport problems. International Journal for Numerical Methods in Engineering, 20: 101–120

    Article  MATH  Google Scholar 

  • Farhat, C.; Fezoui, L.; Lanteri, S. 1993: Two-dimensional viscous flow computations on the CM-2: Unstructured meshes, upwind schemes and massively parallel computations. Computer Methods in Applied Mechanics and Engineering, 102: 61–88

    Article  MATH  Google Scholar 

  • Farhat, C.; Lanateri, S. 1994: Simulation of compressible viscous flows on a variety of MPPs: Computational algorithms for unstructured dynamic meshes and performance results. Computer Methods in Applied Mechanics and Engineering, 119: 35–60

    Article  MATH  Google Scholar 

  • Farhat, C.; Lesoinne, M.; Maman, N. 1995: Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-field formulation, geometric conservation and distributed solution. International Journal for Numerical Methods in Fluids, 21: 807–835

    Article  MATH  MathSciNet  Google Scholar 

  • Farin, G. 1993: Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press

  • Fortes, A. F. Joseph, D. D.; Lundgren, T. S. 1987: Nonlinear mechanics of fluidization of beds of spherical particles, Journal of Fluid Mechanics, 177: 467–483

    Article  Google Scholar 

  • Garrard, W. L.; Tezduyar, T. E.; Aliabadi, S. K.; Kalro, V.; Luker, J.; Mittal, S. 1995: Inflation analysis of ram air inflated gliding parachutes. In Proceedings of AIAA 13th Aerodynamic Decelerator Systems Technology, AIAA Paper 95-1565, Clearwater Beach, Florida

  • George, P. L. 1991: Automatic Mesh Generation, Application to Finite Element Methods, John Wiley & Sons

  • Gresho, P.; Chan, S. 1996: Projection 2 goes turbulent-and fully implicit. to appear in International Journal for Numerical Methods in Fluids

  • Hansbo, P. Szepessy, A. 1990: A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 84: 175–192.

    Article  MATH  MathSciNet  Google Scholar 

  • Holt, D. J. 1990: Saturn: The vehicles. Automotive Engineering, 98 (11): 34–43

    Google Scholar 

  • Hu, H. H.; Joseph, D. D.; Crochet, M. J. 1992: Direct simulation of fluid particle motions. Theoretical and Computational Fluid Mechanics, 3: 285–306

    Article  MATH  Google Scholar 

  • Hughes, T. J. R. 1995: Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127: 387–401

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T. J. R.; Brooks, A. N. 1979: A multi-dimensional upwind scheme with no crosswind diffusion. In Hughes, T. J. R., editor, Finite Element Methods for Convection Dominated Flows, AMD-Vol. 34, pages 19–35, ASME, New York

    Google Scholar 

  • Hughes, T. J. R.; Franca, L. P.; Hulbert, G. M. 1989: A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering, 73: 173–189

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T. J. R.; Franca, L. P.; Mallet, M. 1987: A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems. Computer Methods in Applied Mechanics and Engineering 63: 97–112

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T. J. R.; Hulbert, G. M. 1988: Space-time finite element methods for elasto-dynamics: formulations and error estimates. Computer Methods in Applied Mechanics and Engineering, 66: 339–363

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T. J. R.; Stewart, J. R. 1996: A space-time formulation for multiscale phenomena. To appear in Journal of Computational and Applied Mathematics

  • Jayaweera, K. O. L. F.; Mason, B. J. 1964: The behavior of clusters of spheres falling in a viscous fluid. Journal of Fluid Mechanics, 20: 121–128

    Article  MATH  Google Scholar 

  • Joe, B. 1991: Construction of three-dimensional Delaunay triangulations using local transformations. Computer Aided Geometric Design, 8: 123–142

    Article  MATH  MathSciNet  Google Scholar 

  • Johan, Z.; Hughes, T. J. R.; Mathur, K. K.; Johnsson, S. L. 1992: A data parallel finite element method for computational fluid dynamics on the Connection Machine system. Computer Methods in Applied Mechanics and Engineering, 99 (1): 113–134

    Article  MATH  Google Scholar 

  • Johan, Z.; Hughes, T. J. R.; Shakib, F. 1991: A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids. Computer Methods in Applied Mechanics and Engineering, 87: 281–304

    Article  MATH  MathSciNet  Google Scholar 

  • Johan, Z.; Mathur, K. K.; Johnsson, S. L.; Hughes, T. J. R. 1994: An efficient communications strategy for finite element methods on the Connection Machine CM-5 system. Computer Methods in Applied Mechanics and Engineering, 113: 363–387

    Article  MATH  Google Scholar 

  • Johan, Z.; Mathur, K. K.; Johnsson, S. L.; Hughes, T. J. R. 1995: A case study in parallel computation: Viscous flow around an Onera M6 wing. International Journal for Numerical Methods in Fluids, 21: 877–884

    Article  MATH  Google Scholar 

  • Johnson, A. 1995: Mesh Generation and Update Strategies for Parallel Computation of Flow Problems with Moving Boundaries and Interfaces. PhD thesis. University of Minnesota

  • Johnson, A. A.; Tezduyar, T. E. 1994: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering, 119: 73–94

    Article  MATH  Google Scholar 

  • Johnson, A. A.; Tezduyar, T. E. 1995: Mesh generation and update strategies for parallel computation of 3D flow problems. In Computational Mechanics, '95, Proceedings of International Conference on Computational Engineering Science, Mauna Lani, Hawaii

  • Johnson, A. A.; Tezduyar, T. E. 1996a: Parallel computation of incompressible flows with complex geometries. To appear in International Journal for Numerical Methods in Fluids

  • Johnson, A. A.; Tezduyar, T. E. 1996b: Simulation of multiple spheres falling in a liquid-filled tube. To appear in Computer Methods in Applied Mechanics and Engineering

  • Johnson, C.; Navert, U.; Pitkäranta, J. 1984: Finite element methods for linear hyperbolic problems. Computer Methods in Applied Mechanics and Engineering, 45: 285–312

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, C.; Saranen, J. 1986: Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations. Mathematics of Computation, 47: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Johnsson, S. L.; Mathur, K. K. 1989: Experience with the conjugate gradient method for stress analysis on a data parallel supercomputer. International Journal for Numerical Methods in Engineering, 27: 523–546

    Article  MathSciNet  Google Scholar 

  • Kalro, V.; Aliabadi, S.; Garrard, W.; Tezduyar, T.; Mittal, S.; Stein, K. 1996: Parallel finite element simulation of large ram-air parachutes. To appear in International Journal for Numerical Methods in Fluids

  • Kalro, V.; Tezduyar, T. E. 1995: Parallel finite element computation of 3D incompressible flows on MPPs. In Habashi, W.G., editor, Solution Techniques for Large-Scale CFD Problems, John Wiley & Sons

  • Kashiyama, K.; Ito, H.; Behr, M.; Tezduyar, T. 1995: Three-step explicit finite element computation of shallow water flows on a massively parallel computer. International Journal for Numerical Methods in Fluids, 21: 885–900

    Article  MATH  Google Scholar 

  • Kato, C.; Ikegawa, M. 1991: Large eddy simulation of unsteady turbulent wake of a circular cylinder using the finite element method. In Celik, I., Kobayashi, T.; Ghia, K. N.; Kurokawa, I., editors, Advances in Numerical Simulation of Turbulent Flows, FED-Vol. 117, pages 49–56, New York, ASME

    Google Scholar 

  • Kennedy, J. G.; Behr, M.; Kalro, V.; Tezduyar, T. E. 1994: Implementation of implicit finite element methods for incompressible flows on the CM-5. Computer Methods in Applied Mechanics and Engineering, 119: 95–111

    Article  MATH  Google Scholar 

  • Kobayashi, T. 1992: A review of CFD methods and their application to automobile aerodynamics. In SAE Special Publication SP-908, Vehicle Aerodynamics: Wake Flows, CFD, and Aerodynamic Testing, pages 53–64

  • Le Beau, G. J.; Ray, S. E.; Aliabadi, S. K.; Tezduyar, T. E. 1993: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Computer Methods in Applied Mechanics and Engineering, 104: 397–422

    Article  MATH  Google Scholar 

  • Le Beau, G. J.; Tezduyar, T. E. 1991: Finite element computation of compressible flows with the SUPG formulation. In Dhaubhadel, M. N.; Engelman, M. S.; Reddy, J. N., editors, Advances in Finite Element Analysis in Fluid Dynamics, FED-Vol. 123, pages 21–27, New York, ASME

    Google Scholar 

  • Lingard, J. S. 1995: Ram-air parachute design. In AIAA 13th Aerodynamic Decelerator Conference, 2nd ADS Technology Seminar, Clearwater Beach, Florida

  • Liou, J.; Tezduyar, T. E. 1992: Clustered element-by-element computations for fluid flow. In Simon, H. D., editor, Parallel Computational Fluid Dynamics-Implementation and Results, Scientific and Engineering Computation Series, Chapter 9, pages 167–187, MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Lynch, D. R. 1982: Unified approach to simulation on deforming elements with application to phase change problems. Journal of Computational Physics, 47 (3): 387–411

    Article  MATH  MathSciNet  Google Scholar 

  • Mathur, K. K.; Johnsson, S. L. 1992: Communication primitives for unstructured finite element simulations on data parallel architectures. Computer Systems in Engineering, 3: 63–71

    Article  Google Scholar 

  • Matsunaga, K.; Miyata, H.; Aoki, K.; Zhu, M. 1992: Finite-difference simulation of 3D vortical flows past road vehicles. In SAE Special Publication SP-908, Vehicle Aerodynamics: Wake Flows, CFD, and Aerodynamic Testing, pages 65–84

  • Mittal, S.; Tezduyar, T. E. 1994: Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Computer Methods in Applied Mechanics and Engineering, 112: 253–282

    Article  MATH  MathSciNet  Google Scholar 

  • Mittal, S.; Tezduyar, T. E. 1995: Parallel finite element simulation of 3d incompressible flows-Fluid-structure interaction. International Journal for Numerical Methods in Fluids, 21: 933–953

    Article  MATH  Google Scholar 

  • Morgan, K.; Peraire, J.; Peiró J. 1992: Unstructured grid methods for compressible flows. In Special Course on Unstructured Grid Methods for Advection Dominated Flows, pages 5-1–5-39. Advisory Group for Aerospace Research and Development

  • Muto, S. 1983: The aerodynamic drag coefficient of a passenger car and methods for reducing it. In Technological Advances in Vehicle Design Series, SP 3; Impact of Aerodynamics on Vehicle Design, pages 57–69, International Journal of Vehicle Design

  • Özturan, C.; deCougny, H. L.; Shephard, M. S.; Flaherty, J. E. 1994: Parallel adaptive mesh refinement and redistribution on distributed memory computers. Computer Methods in Applied Mechanics and Engineering, 119: 123–137

    Article  MATH  Google Scholar 

  • Ray, S. E.; Wren, G. P.; Aliabadi, S. K.; Tezduyar, T. E. 1996: High performance computation of fluid-structure interaction and two-phase flow problems. In Proceedings of the 20th Army Science Conference, Norfolk, Virginia, to appear

  • Saad, Y.; Schultz, M. 1986: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7: 856–869

    Article  MATH  MathSciNet  Google Scholar 

  • Salinger, A. G.; Xiao, Q.; Zhou, Y.; Derby, J. J.; 1994: Massively parallel finite element computations of three-dimensional, time-dependent, incompressible flows in materials processing systems. Computer Methods in Applied Mechanics and Engineering, 119: 139–156

    Article  MATH  Google Scholar 

  • Shakib, F. 1988: Finite Element Analysis of the Compressible Euler and Navier-Stokes Equations. PhD thesis, Department of Mechanical Engineering, Stanford University

  • Shakib, S.; Hughes, T. J. R.; Johan, Z. 1989: A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 75: 415–456

    Article  MATH  MathSciNet  Google Scholar 

  • Shephard, M. S.; Georges, M. K. 1991: Automatic three-dimensional mesh generation by the finite octree technique. International Journal for Numerical Methods in Engineering, 32: 709–749

    Article  MATH  Google Scholar 

  • Smagorinsky, J. 1963: General circulation experiments with the primitive equations. Monthly Weather Review, 91 (3): 99–165

    Article  Google Scholar 

  • Soulaimani, A.; Fortin, M.; Dhatt, G.; Ouellet, Y. 1991: Finite element simulation of two- and three-dimensional free surface flows. Computer Methods in Applied Mechanics and Engineering, 86: 265–296

    Article  MATH  Google Scholar 

  • Speziale, C. G. 1991: Analytical methods for the development of Reynolds-stress closures in turbulence. Annual Review of Fluid Mechanics, 23: 107–157

    Article  MathSciNet  Google Scholar 

  • Tezduyar, T. E. 1991: Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 28: 1–44

    Article  MathSciNet  Google Scholar 

  • Tezduyar, T. E.; Aliabadi, S.; Behr, M.; Johnson, A.; Kalro, V.; Litke, M. 1996: High performance computing techniques for flow simulations. In Papadrakakis, M., editor, Solving Large-Scale Problems in Mechanics: Parallel and Distributed Computer Applications, John Wiley & Sons, to appear

  • Tezduyar, T. E.; Aliabadi, S.; Behr, M.; Johnson, A.; Kalro, V.; Waters, C. 1995: 3D simulation of flow problems with parallel finite element computations on the Cray T3D. In Computational Mechanics '95, Proceedings of International Conference on Computational Engineering Science, Mauna Lani, Hawaii

  • Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S. 1992a: Massively parallel finite element computation of three-dimensional flow problems. In Proceedings of the 6th Japan Numerical Fluid Dynamics Symposium, pages 15–24, Tokyo, Japan

  • Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S. 1993: Parallel finite-element computation of 3D flows. IEEE Computer, 26–10 (10): 27–36

    Article  Google Scholar 

  • Tezduyar, T. E.; Aliabadi, S. K.; Behr, M.; Mittal, S. 1994: Massively parallel finite element simulation of compressible and incompressible flows. Computer Methods in Applied Mechanics and Engineering, 119: 157–177

    Article  MATH  Google Scholar 

  • Tezduyar, T. E.; Behr, M.; Aliabadi, S. K.; Mittal, S.; Ray, S. E. 1992b: A new mixed preconditioning method for finite element computations. Computer Methods in Applied Mechanics and Engineering, 99: 27–42

    Article  MATH  MathSciNet  Google Scholar 

  • Tezduyar, T. E.; Behr, M.; Liou, J. 1992c: A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary tests. Computer Methods in Applied Mechanics and Engineering, 94 (3): 339–351

    Article  MATH  MathSciNet  Google Scholar 

  • Tezduyar, T. E.; Behr, M.; Mittal, S.; Johnson, A. A. 1992d: Computation of unsteady incompressible flows with the finite element methods-space-time formulations, iterative strategies and massively parallel implementations. In Smolinski, P.; Liu, W. K.; Hulbert, G.; Tamma, K., editors, New Methods in Transient Analysis, AMD-Vol. 143, pages 7–24, New York, ASME

    Google Scholar 

  • Tezduyar, T. E.; Hughes, T. J. R. 1983: Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In Proceedings of AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada

  • Xiao, Q.; Salinger, A. G.; Zhou, Y.; Derby, J. J. 1995: Massively parallel finite element analysis of coupled, incompressible flows: A benchmark computation of baroclinic annulus waves. International Journal for Numerical Methods in Fluids, 21: 1007–1014

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 13 May 1996

Dedicated to the 10th anniversary of Computational Mechanics

Sponsored by ARO, ARPA, NASA-JSC, and by the Army High Performance Computing Research Center under the auspices of the Department of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/ contract number DAAH04-95-C-0008. The content does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. CRAY C90 time and support for the second author was provided in part by the Minnesota Supercomputer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tezduyar, T., Aliabadi, S., Behr, M. et al. Flow simulation and high performance computing. Computational Mechanics 18, 397–412 (1996). https://doi.org/10.1007/BF00350249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350249

Keywords

Navigation