Skip to main content
Log in

Iron-catalyzed oxidation of wood carbohydrates

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Douglas-fir and red oak wood meal, cellulose, and an 0-acetyl-4-0-methylglucuronoxylan were exposed to finely divided iron powder under conditions favorable for rusting. Analyses of the wood meal and polysaccharides following exposure indicated that rusting iron causes a decomposition of all wood constituents. Cellulose was oxidized in the presence of rusting iron to form an oxycellulose which was predominantly reducing in character. Direct depolymerization of cellulose and xylan also occurred. The deterioration was favored by an acidic environment, contrary to earlier reports that the primary degradation mechanism is alkalidependent. An iron-catalyzed oxidation of wood constituents is theorized to occur as a result of free-radical production associated with ferrous ion oxidation in the presence of organic compounds. The free radicals produced lead to the formation of hydrogen peroxide which allows Fenton-type reactions to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, E. 1955. The autoxidation of nonirradiated homogeneous aqueous solutions. Z. Elektrochem. 59: 903–906

    Google Scholar 

  • American Society for Testing and Materials. 1964. Part 16: Structural sandwich constructions; Wood; Adhesives.

  • Baechler, R. H. 1954. Wood in chemical engineering construction. J. For. Prod. Res. Soc. 4(5): 332–336.

    Google Scholar 

  • Baechler, R. H., Richards, C. A. 1951. Deterioration of wood in cooling towers. Trans. Amer. Soc. Mech. Eng. 73: 1055–1059.

    Google Scholar 

  • Bawn, C. E. H. 1953. Free radical reactions in solution initiated by heavy metal ions. Discuss. Farad. Soc. 14: 181–190.

    Google Scholar 

  • Bell, W. A., Gibson, J. M. 1957. Degradation of cellulosic fibers in contact with rusting iron. Nature 180: 1065.

    Google Scholar 

  • Bouveng, H. O., Garegg, P. J., Lindberg, B. 1960. Position of the O-acetyl groups in birch xylan. Acta Chemica Scandinavica 14 (3): 742–748.

    Google Scholar 

  • Bouveng, H. O., Lindberg, B. 1965. Native Acetylated Wood Polysaccharides, In: Whistler, R. L. (Ed.): Methods in Carbohydrate Chemistry. Vol. V. General Polysaccharides. New York: Academic Press, 147–150.

    Google Scholar 

  • Brown, R. K., Purves, C. B. 1947. Nitrations of swollen and collapsed cotton linters. Pulp and Paper Mag. Can. 48 (5): 100–107.

    Google Scholar 

  • Browning, B. L. (Ed.) 1963. The chemistry of wood. New York: Interscience Publishers.

    Google Scholar 

  • Browning, B. L. 1967. Methods of wood chemistry, Vol. II. New York: Interscience Publishers.

    Google Scholar 

  • Browning, B. L., Bublitz, L. O. 1953. Wood deterioration in cooling towers. Ind. and Eng. Chem. 45 (7): 1516–1520.

    Google Scholar 

  • Desai, R. L. 1968. Photodegradation of cellulosic materials—a review of the literature. Pulp and Paper Mag. Can. 59 (8): 53–61.

    Google Scholar 

  • Entwistle, D., Cole, E. H., Wooding, N. S. 1949a. The autoxidation of alkali cellulose. Part I. Textile, Res. J. 19 (9): 527–544.

    Google Scholar 

  • Entwistle, D., Cole, E. H., Wooding, N. S. 1949b. The autoxidation of alkali cellulose. Part II. Textile Res. J. 19 (10): 609–624.

    Google Scholar 

  • Everett, M. R., Sheppard, F. 1944. Oxidation of carbohydrates; Ketouronic acids; Salt catalysis. Oklahoma City, Okla. Times-Journal Publishing Co.

    Google Scholar 

  • Farber, E. 1954. Chemical deterioration of wood in the presence of iron. Ind. and Eng. Chem. 46 (9): 1968–1972.

    Google Scholar 

  • Fischer, R. B. 1961. Quantitative chemical analysis. Philadelphia, Pa.: W. E. Saunders Co.

    Google Scholar 

  • George, P. 1954. The oxidation of ferrous perchlorate by molecular oxygen. Chem. Soc. J. (London): 4349–4459.

  • Gray, V. R. 1958. The acidity of wood. J. Inst. Wood Sci. 1: 58–64.

    Google Scholar 

  • Hagglund, E. 1930. Determination of the copper number. Pulp and Paper Mag. Can. 30 (10): 389–391.

    Google Scholar 

  • Heuser, E. 1944. Chemistry of cellulose. New York: J. Wiley and Sons.

    Google Scholar 

  • Highley, T. L., Scheffer, T. C., Selbo, M. L. 1971. Wood minesweepers are sound after 15 years of service. Forest Prod. J. 21 (5): 46–48.

    Google Scholar 

  • Hunt, G. M., Garratt, G. A., 1953. Wood preservation. New York: McGraw-Hill Book Co., Inc.

    Google Scholar 

  • Ivanoff, V. I., Kaverznewa, E. D., Kouznetsova, Z. I. 1952. Primary oxidative transformations of cellulose under the influence of hydrogen peroxide. Akad. Nauk. Doklady. 86: 301–304. Translated by T. Halpert-Scanderbeg, Univ. British Columbia, 1954.

    Google Scholar 

  • Johnson, R. P. A. 1942. Wood Tanks. U.S.For. Prod. Lab. Report No. R1285. Madison, Wisc.

  • Jones, J. K. N., Wise, L. E., Jappe, J. P. 1956. The action of alkali-containing metaborates on wood cellulose. Tappi 39 (3): 139–141.

    Google Scholar 

  • Kass, A., Wangaard, F. F., Schroeder, H. A. 1970. Chemical degradation of wood: The relationship between strength retention and pentosan content. Wood and Fiber 2 (1): 31–39.

    Google Scholar 

  • Kosik, M., Micko, M., Domansky, R. 1969. Autoxidation of beech wood and its components. Wood Science 1 (3): 167–171.

    Google Scholar 

  • Larsen, B., Smidsrod, O. 1967. Effect of pH and buffer ions on the degradation of carbohydrates by Fenton's reagent. Acta Chem. Scand. 21 (2): 552–564.

    Google Scholar 

  • Lindsley, C. H., Frank, M. 1953. Intrinsic viscosity of nitrocellulose. Ind. Eng. Chem. 45: 2491–2496.

    Google Scholar 

  • MacLean, H., Gardner, J. A. F. 1951. Deterioration of wooden dry kilns used for drying western hemlock lumber. Forest Ind. 78: 88, 90.

    Google Scholar 

  • Malm, C. J., Glegg, R. E., Luce, M. 1961. Solubility of cellulose in iron-sodium-tartrate solution. Tappi 44 (2): 102–108.

    Google Scholar 

  • Marian, J. E., Wissing, A. 1960a. The chemical and mechanical deterioration of wood in contact with iron. Part I—Mechanical deterioration. Svensk Papperstid. 63 (3): 47–57.

    Google Scholar 

  • Marian, J. E., Wissing, A. 1960b. The chemical and mechanical deterioration of wood in contact with iron. Part II—Chemical decomposition. Svensk Papperstid. 63 (4): 98–106.

    Google Scholar 

  • Marian, J. E., Wissing, A. 1960c. The chemical and mechanical deterioration of wood in contact with iron. Part III—Effect of some wood preservatives. Svensk Papperstid. 63 (5): 130–132.

    Google Scholar 

  • Marian, J. E., Wissing, A. 1960d. The chemical and mechanical deterioration of wood in contact with iron. Part IV—Prevention of deterioration. Svensk Papperstid. 63 (6): 174–183.

    Google Scholar 

  • Michie, R. I. C., Neale, S. M. 1959. Catalytic action of copper in the alkaline autoxidation of cellulose at low alkali concentration. Nature 183: 534–535.

    Google Scholar 

  • Millett, M. A., Schultz, J. S., Saeman, J. F. 1958. Measurement of ion-exchange capacity of some wood pulps and nitropulps. Tappi 41 (10): 560–567.

    Google Scholar 

  • Mitchell, R. L. 1946. Chain length measurements on nitrated cellulosic constituents of wood. Ind. Eng. Chem. 38 (8): 843–850.

    Google Scholar 

  • Ott, E., Spurlin, H. M., Grafflin, M. W. (Eds.). 1965. Cellulose and Cellulose Derivatives. New York: Interscience Publishers, Inc. (3 Vols.).

    Google Scholar 

  • Pigman, W., Horton, D. (Eds.). 1970. The carbohydrates-chemistry and biochemistry. New York: Academic Press.

    Google Scholar 

  • Posner, A. M. 1953. The kinetics of the charcoal catalyzed autoxidation of Fe2+ ion in dilute HCl solutions. Trans. Faraday Soc. 49: 389–395.

    Google Scholar 

  • Sarkanen, K. V., Ludwig, C. H. (Eds.) 1971. Lignins-occurrence, formation, structure and reactions. New York: Wiley-Interscience.

    Google Scholar 

  • Schumb, W. C., Satterfield, C. N., Wentworth, R. L. 1955. Hydrogen peroxide. New York: Reinhold Publishing Corp.

    Google Scholar 

  • Scott, G. 1965. Atmospheric oxidation and antioxidants. New York: Elsevier Publishing Co.

    Google Scholar 

  • Sitch, D. A. 1949. The isolation and fractionation of white birch holocellulose. Pulp and Paper Mag. Can. 50: 234–236, 290, 292.

    Google Scholar 

  • Stamm, A. J. 1949. Wood (properties of interest to a chemical engineer). Indust. and Eng. Chem. 41: 2149–2152, 40: 1923–1932 (1948), 39: 1256–1261 (1947).

    Google Scholar 

  • Stamm, A. J. 1961. Three methods for determining the pH of wood and paper. Forest Prod. J. 11 (7): 310–312.

    Google Scholar 

  • Stern, G. E. 1950. Deterioration of green wood along steel nail shanks and its influence on nail-holding properties. Virginia J. Sci. (July): 200–218.

  • Technical Association of the Pulp and Paper Industry (Tappi). 1970. New York: Testing Methods, Recommended Practices, and Specifications.

  • Thompson, W. S. 1969. Effect of Chemicals, Chemical Atmospheres, and Contact with Metals on Southern Pine Wood: A Review. Research Report No. 6, Forest Products Utilization Laboratory, Mississippi State Univ., State College, Miss.

    Google Scholar 

  • Timell, T. E. 1954a. The effect of rate of shear on the viscosity of dilute solutions of cellulose nitrate. Svensk Papperstid. 57 (21): 777–788.

    Google Scholar 

  • Timell, T. E. 1954b. The effect of solvent-solute interaction on the viscosity of dilute solutions of cellulose nitrate. Svensk Papperstid. 57 (24): 913–920.

    Google Scholar 

  • Timell, T. E. 1955. Chain length and chain length distribution of native white spruce cellulose. Pulp and Paper Mag. Can. 56 (7): 104–114.

    Google Scholar 

  • Timell, T. E. 1957a. Molecular properties of seven native wood celluloses. Tappi 40 (1): 25–29.

    Google Scholar 

  • Timell, T. E. 1957b. Molecular weight of native celluloses. Svensk Papperstid. 60 (22): 836–842.

    Google Scholar 

  • Timell, T. E. 1957c. Nitration as a means of isolating the alpha-cellulose component of wood. Tappi 40 (1): 30–38.

    Google Scholar 

  • Timell, T. E. 1959. Isolation of holocellulose from jack pine (Pinus banksiana). Pulp and Paper Mag. Can. 60 (1): T26–28.

    Google Scholar 

  • Timell, T. E. 1960a. Isolation and properties of a glucomannan from the wood of white birch (Betula papyrifera Marsh.). Tappi 43 (10): 844–848.

    Google Scholar 

  • Timell, T. E. 1960b. Isolation of hardwood glucomannans. Svensk Papperstid. 63 (15): 472–476.

    Google Scholar 

  • Timell, T. E. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1 (1): 45–70.

    Google Scholar 

  • Timell, T. E., Glaudemans, C. P. J., Gillham, J. K. 1959. Recent studies on the polysaccharides of white birch and other hardwoods. Tappi 42 (8): 623–634.

    Google Scholar 

  • Timell, T. E., Jahn, E. C. 1954. A study of the isolation and polymolecularity of paper birch holocellulose. Svensk Papperstid. 54 (24): 831–846.

    Google Scholar 

  • Uhlig, H. H. 1963. Corrosion and corrosion control, and introduction to corrosion science and engineering. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Uri, N. 1956. Metal ion catalysis and polarity of environment in the aerobic oxidation of unsaturated fatty acids. Nature 177 (4521): 1177–1178.

    Google Scholar 

  • United States Department of Agriculture. 1955. Wood handbook, Agr. Handbook No. 72, Washington, D. C.

  • Van Beckum, W. G., Ritter, G. J. 1937. Rapid methods for the determination of holocellulose and Cross and Bevan cellulose in wood. Paper Trade J. 105 (18): 127–130.

    Google Scholar 

  • Wangaard, F. F. 1966. Resistance of wood to chemical degradation. Forest Prod. J. 16 (2): 53–64.

    Google Scholar 

  • Waters, W. A. 1964. Mechanism of Oxidation of Organic Compounds. New York: John Wiley and Sons.

    Google Scholar 

  • Weiss, J. 1953. The autoxidation of ferrous ions in aqueous solution. Experimentia 9: 61–62.

    Google Scholar 

  • Welcher, F. J. 1958. The analytical uses of ethylenediaminete traacetic acid. New York: D. Van Nostrand Co.

    Google Scholar 

  • Whistler, Roy L., Wolfrom, M. L. (Eds.). 1962–1965. Methods in carbohydrate chemistry. New York: Academic Press (5 Vols.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research was performed at Colorado State University in partial fulfillment of doctorate degree requirements for JAE. The research topic was originally suggested by H. E. Troxell. All inquiries should be addressed to HAS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emery, J.A., Schroeder, H.A. Iron-catalyzed oxidation of wood carbohydrates. Wood Science and Technology 8, 123–137 (1974). https://doi.org/10.1007/BF00351367

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351367

Keywords

Navigation