Skip to main content
Log in

Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling

  • Surfaces And Maltilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ablation rate of Kapton™-type polyimide has been measured as a function of incident fluence and excimer laser wavelength using a sensitive quartz-crystal microbalance (QCM). The experiments were performed such that the fluence and the ablated depth were known for each laser pulse, avoiding the need to average rate and fluence data over many pulses. By limiting the investigations to the low-fluence regimes near ablation threshold, high precision and detailed curve shapes were obtained. It was found that the ablation rate increases smoothly and exponentially with increasing fluence for 248, 308, and 351 nm wavelengths. This exponential behavior was modeled using an Arrheniustype thermal rate equation. In contrast, the 193 nm curve is linear in fluence, displays a sharp threshold, and is consistent with a possible photochemical ablation mechanism. Using a sophisticated surface temperature modeling code, the maximum laser induced surface temperature at the fluence at which ablation can first be detected is found to be the same, ∼ 850° C, for all four wavelengths. This “ablation” temperature is significantly higher than the approximately 500° C temperature at which Kapton™ starts to degrade under isothermal heating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Srinivasan, B. Braren, R. Dreyfus: J. Appl. Phys. 61, 372 (1987)

    Google Scholar 

  2. G. Pettit, R. Sauerbrey: Appl. Phys. Lett. 58, 793 (1991)

    Google Scholar 

  3. J. Andrew, P. Dyer, D. Forster, P. Key: Appl. Phys. Lett. 43, 717 (1983)

    Google Scholar 

  4. J. Brannon, J. Lankard, A. Baise, F. Burns, J. Kaufman: J. Appl. Phys. 58, 2036 (1985)

    Google Scholar 

  5. G. Ulmer, B. Hasselberger, H. Busmann, E. Campbell: Appl. Surf. Sci. 46, 272 (1990)

    Google Scholar 

  6. C. Otis: Appl. Phys. B 49, 455 (1989)

    Google Scholar 

  7. D. Singleton, G. Paraskevopoulos, R. Taylor: Chem. Phys. 144, 415 (1990)

    Google Scholar 

  8. J.T.C. Yeh: J. Vac. Sci. Technol. A 4, 653 (1986)

    Google Scholar 

  9. H. Phillips, D. Callahan, R. Sauerbrey, G. Szabo, Z. Bor: Appl. Phys. Lett. 58, 2761 (1991)

    Google Scholar 

  10. F. Bachmann: Chemtronics 4, 149 (1989)

    Google Scholar 

  11. J. Lankard, G. Wolbold: Appl. Phys. A 54, 355 (1992)

    Google Scholar 

  12. R. Srinivasan, B. Braren: J. Polymer Sci., Polymer Chem. 22, 2601 (1984)

    Google Scholar 

  13. V. Srinivasan, M. Smrtic, S. Babu: J. Appl. Phys. 59, 3861 (1986)

    Google Scholar 

  14. J. Brannon: J. Vac. Sci. Technol. B 7, 1064 (1989)

    Google Scholar 

  15. C. Lu, A. Czanderna: Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, New York 1984)

    Google Scholar 

  16. R. Jackson, G. Tyndall: J. Appl. Phys. 62, 315 (1987)

    Google Scholar 

  17. S. Lazare, V. Granier: Laser Chem. 10, 25 (1989)

    Google Scholar 

  18. H. Pulker, E. Benes, D. Hammer, E. Söllner: Thin Solid Films 32, 27 (1976)

    Google Scholar 

  19. K. Behrndt: J. Vac. Sci. Technol. 8, 622 (1971)

    Google Scholar 

  20. J. Brand, S. George: Surf. Sci. 167, 341 (1986)

    Google Scholar 

  21. W. Natzle, D. Padowitz, S. Sibener: J. Chem. Phys. 88, 7975 (1988)

    Google Scholar 

  22. X. Zhu, Th. Rasing, Y. Shen: Chem. Phys. Lett. 155, 459 (1989)

    Google Scholar 

  23. H.S. Carslaw, J.C. Jaeger: Conduction of Heat in Solids (Clarendon, London 1959)

    Google Scholar 

  24. J. Brannon, K. Brannon: J. Vac. Sci. Technol. B 7, 1275 (1989)

    Google Scholar 

  25. T. J. Chuang: Surf. Sci. Rep. 3, 44 (1983)

    Google Scholar 

  26. J. Frisoli, Y. Hefetz, T. Deutsch: Appl. Phys. B 52, 168 (1991)

    Google Scholar 

  27. S. Freilich: Macromolecules 20, 973 (1987)

    Google Scholar 

  28. G. Arjavalingam, G. Hougham, J. LaFemina: Polymer 31, 840 (1990)

    Google Scholar 

  29. DuPont, Inc.: Kapton Polyimide Film — Summary of Properties (1988)

  30. S. Mann, B. Todd, J. Stuckless, T. Seto, D. King: Chem. Phys. Lett. 183, 529 (1991)

    Google Scholar 

  31. J. Hicks, L. Urbach, E. Plummer, H.-L. Dai: Phys. Rev. Lett. 61, 2588 (1988)

    Google Scholar 

  32. E. Arakawa, M. Williams, J. Ashley, L. Painter: J. Appl. Phys. 52, 3579 (1981)

    Google Scholar 

  33. G. Kotel'nikov, A. Sidorovich: Polymer Sci. USSR 25, 3053 (1983)

    Google Scholar 

  34. K. Domen, T.J. Chuang: J. Chem. Phys. 90, 3332 (1989)

    Google Scholar 

  35. W. Creasy, J. Brenna: Chem. Phys. 126, 453 (1988)

    Google Scholar 

  36. G. Ulmer, B. Hasselberger, H.-G. Busmann, E. Campbell: Appl. Surf. Sci. 46, 272 (1990)

    Google Scholar 

  37. S. Hansen: J. Appl. Phys. 66, 1411 (1989)

    Google Scholar 

  38. R. von Gutfeld, F. McDonald, R. Dreyfus: Appl. Phys. Lett. 49, 1059 (1986)

    Google Scholar 

  39. P. Dyer, J. Sidhu: J. Appl. Phys. 57, 1420 (1985)

    Google Scholar 

  40. G. Gorodetsky, T. Kazyaka, R. Melcher, R. Srinivasan: Appl. Phys. Lett. 46, 828 (1985)

    Google Scholar 

  41. Y. Liu, H. Cole, H. Philipp, R. Guida: SPIE 774, 133 (1987)

    Google Scholar 

  42. S. Mihailov, W. Duley: J. Appl. Phys. 69, 4092 (1991)

    Google Scholar 

  43. G. Koren: Appl. Phys. B 46, 147 (1988)

    Google Scholar 

  44. R. Dreyfus, R. Kelly, R. Walkup, R. Srinivasan: SPIE 710, 46 (1986)

    Google Scholar 

  45. P. Goodwin, C. Otis: Appl. Phys. Lett. 55, 2286 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küper, S., Brannon, J. & Brannon, K. Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl. Phys. A 56, 43–50 (1993). https://doi.org/10.1007/BF00351902

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351902

PACS

Navigation