Skip to main content
Log in

Application of homogenization FEM analysis to regular and re-entrant honeycomb structures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Honeycomb structures are widely used in structural applications because of their high strength per density. Re-entrant honeycomb structures with negative Poisson's ratios may be envisaged to have many potential applications. In this study, an homogenization finite element method (FEM) technique developed for the analysis of spatially periodic materials is applied for the analysis of linear elastic responses of the regular and re-entrant honeycomb structures. Young's modulus of the regular honeycomb increased with volume fraction. Poisson's ratio of the regular honeycomb structure decreased from unity as volume fraction increased. The re-entrant honeycomb structure had a negative Poisson's ratio, its value dependent upon the inverted angle of cell ribs. Young's modulus of the re-entrant honeycomb structure decreased as the inverted angle of cell ribs increased. The results are in good agreement with previous analytical results. This homogenization theory is also applicable to three-dimensional foam materials — conventional and re-entrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b i :

Body force

E, E ijkl :

Young's modulus, elasticity tensor

E e :

Effective Young's modulus

E Hijkl :

Homogenized elasticity tensor

t i :

Traction

ui, u:

Displacement

vi, v:

Virtual displacement

xi, x:

Macroscale coordinate

yi, y:

microscale coordinate

ɛ:

Microscopic/macroscopic ratio

φ:

Volume fraction

v :

Poisson's ratio

ve :

Effective Poisson's ratio

σij :

Stress

Χ KLP :

Microscale parameter of separation of variables

References

  1. Y. C. FUNG, in “Foundation of solid mechanics” (PrenticeHall, Englewood Cliffs, NJ, 1968).

    Google Scholar 

  2. J. B. CHOI and R. S. LAKES, J. Mater. Sci. 27 (1992) 4678.

    Article  CAS  Google Scholar 

  3. Idem., ibid. 27 (1992) 5375.

    Article  CAS  Google Scholar 

  4. A. G. KOLPAKOV, Prikl. Mat. Mekh. 59 (1985) 969.

    Google Scholar 

  5. R. F. ALMGREN, J. Elasticity 15 (1985) 427.

    Article  Google Scholar 

  6. W. E. WARREN and A. M. KRAYNIK, Mech. Mater. 6 (1987) 27.

    Article  Google Scholar 

  7. T. L. WARREN, J. Appl. Phys. 67 (1990) 7591.

    Article  Google Scholar 

  8. L. J. GIBSON and M. ASHBY, in “Mechanics of Cellular Solids” (Pergamon Press, Oxford, 1988).

    Google Scholar 

  9. A. E. LOVE, in “A Treatise on the Mathematical Theory of Elasticity” (Dover Publication, NY, 1944).

    Google Scholar 

  10. M. MIKII and Y. MUROTSU, JSME Int. J. 32 (1989) 67.

    Google Scholar 

  11. K. E. EVANS, J. Phys. D, Appl. Phys. 22 (1989) 1870.

    Article  CAS  Google Scholar 

  12. K. L. ALDERSON and K. E. EVANS, Polymer 33 (1992) 4435.

    Article  CAS  Google Scholar 

  13. Z. HASHIN, J. Appl. Mech. 50 (1983) 481.

    Article  Google Scholar 

  14. E. SANCHEZ DE PALENCIA, in “Nonhomogeneous Media and Vibration Theory” (Lecture notes in physics. No. 127, Springer Verlag, Berlin, 1980).

    Google Scholar 

  15. J. M. GUEDES, PhD thesis, University of Michigan (1990).

  16. W. E. WARREN and A. M. KRAYNIK, J. Appl. Mech. 55 (1988) 341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Choi, J.B. & Choi, K. Application of homogenization FEM analysis to regular and re-entrant honeycomb structures. JOURNAL OF MATERIALS SCIENCE 31, 4105–4110 (1996). https://doi.org/10.1007/BF00352675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352675

Keywords

Navigation