Skip to main content
Log in

The molecular relaxation mechanisms in cork as studied by thermally stimulated discharge currents

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric relaxation mechanisms present in cork have been investigated in the temperature range -100 to 100 °C using the technique of thermally stimulated discharge currents. A relaxation mechanism was detected which showed a compensation behaviour as observed for the α-relaxation (or glass transition relaxation) of synthetic polymers and which lead us to attribute to cork a glass transition-like temperature of 18 °C. One lower temperature mechanism was also observed, with low activation enthalpy and entropy, which is presumably originated by local motions (internal rotations) of polar molecular groups. An upper T g relaxation of higher intensity was also detected which was attributed to large-scale non-cooperative motions of polymeric segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. NATIVIDADE, “Subericultura” (Ministério da Economia, Direcção dos Serviços Florestais e Agrícolas, Lisboa, 1950).

  2. H. PEREIRA, Wood Sci. Technol. 22 (1988) 211.

    Article  CAS  Google Scholar 

  3. P. SITTLE, Protoplasma 54 (1962) 555.

    Article  Google Scholar 

  4. H. PEREIRA, M. E. ROSA and M. A. FORTES, Int. Assoc. Wood Anat. Bull. 8(3) (1987) 213.

    Google Scholar 

  5. M. E. ROSA and M. A. FORTES, Mater. Sci. Eng. 100 (1988) 69.

    Article  CAS  Google Scholar 

  6. Idem, J. Mater. Sci. 23 (1988) 35.

    Article  Google Scholar 

  7. Idem, ibid. 26 (1991) 341.

    Article  Google Scholar 

  8. C. M. GOMES, A. C. FERNANDES and B. S. ALMEIDA, J. Coll. Interface Sci. 156 (1993) 195.

    Article  CAS  Google Scholar 

  9. I. M. VEIGA, A. C. FERNANDES, B. S. ALMEIDA and A. J. GROSZEK, J. Mater. Sci. Lett. 12 (1993) 1206.

    CAS  Google Scholar 

  10. M. MOURGES, M. F. HARMAND, A. LAMURE and C. LACABANNE, J. Thermal Anal. 40 (1993) 863.

    Article  Google Scholar 

  11. A. B. DIAS, J. J. MOURA RAMOS and G. WILLIAMS, Polymer, 35 (1994) 1253.

    Article  CAS  Google Scholar 

  12. A. B. DIAS, N. T. CORREIA, J. J. MOURA RAMOS and A. C. FERNANDES, Polym. Int., 33 (1994) 293.

    Article  CAS  Google Scholar 

  13. C. LACABANNE and D. CHATAIN, J. Polym. Sci. Polym. Phys. Ed. 11 (1973) 2315.

    Article  CAS  Google Scholar 

  14. L. J. GIBSON and M. F. ASHBY, “Cellular Solids. Structure and Properties” (Pergamon Press, Oxford, 1988).

    Google Scholar 

  15. J. P. IBAR, Thermochim. Acta 192 (1991) 91.

    Article  CAS  Google Scholar 

  16. J. F. MANO, J. J. MOURA RAMOS, A. C. FERNANDES and G. WILLIAMS, Polymer 35 (1994) 5171.

    Google Scholar 

  17. J. F. MANO, N. T. CORREIA, J. J. MOURA RAMOS, A. C. FERNANDES, J. Polym. Sci. Polym. Phys. Ed., in press.

  18. D. J. PLAZEK, J. Polym. Sci. Polym. Phys. Ed. 20 (1982) 1533.

    Article  CAS  Google Scholar 

  19. D. J. PLAZEK and G.-F. GU, ibid. 20 (1982) 1551.

    Article  CAS  Google Scholar 

  20. J. CHEN, L. J. FETTERS and D. J. PLAZEK, ibid. 20 (1982) 1565.

    Article  CAS  Google Scholar 

  21. S. J. ORBON and D. J. PLAZEK, ibid. 20 (1982) 1575.

    Article  CAS  Google Scholar 

  22. R. F. BOYER, in “Computational Modelling of Polymers”, edited by J. BICERANO (Marcel Dekker, New York, 1992) pp. 1–52.

    Google Scholar 

  23. C. LACABANNE, P. GOYAUD and R. F. BOYER, J. Polym. Sci. Polym. Phys. Ed. 18 (1980) 277.

    Article  CAS  Google Scholar 

  24. N. T. CORREIA, J. F. MANO and J. J. MOURA RAMOS, manuscript in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mano, J.F., Correia, N.T., Moura Ramos, J.J. et al. The molecular relaxation mechanisms in cork as studied by thermally stimulated discharge currents. JOURNAL OF MATERIALS SCIENCE 30, 2035–2041 (1995). https://doi.org/10.1007/BF00353030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353030

Keywords

Navigation