Skip to main content
Log in

Effect of laser surface melting on the corrosion resistance of chromium-plated 9Cr-1Mo ferritic steel in an acidic medium

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

9Cr-1 Mo ferritic steel forms an integral part of some of the nuclear power generating industries where it is used as the steam generating material. Its corrosion resistance could be further improved by employing a chromium coating over it. However, this chromium coating has been found to be unsatisfactory owing to the microcracks present in the coating. Laser surface melting (LSM) could be effectively used not only to remove these microcracks but also to form a better corrosion-resistant modified surface without affecting the bulk properties of the material. Studies were carried out on the laser surface melted chromium-plated 9Cr-1Mo steel. The specimens with chromium deposit thicknesses ranging from 30–70 μm were prepared and then laser irradiated. Optical microscopic studies on the cross-sections of these specimens revealed an average laser-melted thickness of around 0.1–0.5 mm, depending upon the irradiation parameter used. Aqueous corrosion behaviour of these specimens was studied by anodic polarization in 1N H2SO4 medium. Anodic polarization experiments were carried out for specimens after repolishing the same specimen until the 9Cr-1Mo base metal was reached. The passive and peak current density values, range of passivity, peak and transpassive potentials, were determined at each stage of polishing, and these were compared with those of pure chromium metal as well as 9Cr-1Mo alloy in the same medium. Observation of these data indicates that the laser surface melting could be beneficial in raising the aqueous corrosion resistance of such chromium-coated steels, to a level comparable with that of the pure chromium metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Draper and J. M. Poate, Int. Metals Rev. 30 (1985) 85.

    CAS  Google Scholar 

  2. S. Chiba, T. Sato, A. Kawashima, K. Asami and K. Hashimoto, Corros. Sci. 26 (1986) 311.

    Article  CAS  Google Scholar 

  3. D. S. Gnanamothu, in “Applications of Lasers in Materials Processing”, edited by E. A. Metzbower (ASM, Cleveland, OH, 1979) p. 177.

    Google Scholar 

  4. W. M. Steen, in “Proceedings of Second European Conference on Laser Treatment of Materials”, Bad Nauheim, FRG (1988) p. 60.

  5. P. G. Moore and E. McCafferty, J. Electrochem. Soc. 128 (1981) 1391.

    Article  CAS  Google Scholar 

  6. J. Mazumder and J. Singh, High Temp. Mater. Proc. 7 (1986) 101.

    Article  CAS  Google Scholar 

  7. E. McCafferty, G. K. Hubler, P. M. Hatishan, P. G. Moore, R. K. Kant and B. D. Sartwell, Mat. Sci. Engng 86 (1987) 1.

    Article  CAS  Google Scholar 

  8. U. Kamachi Mudali, R. K. Dayal, J. B. Gananamoorthy, S. M. Kanetakar and S. B. Ogale, Mater. Trans. JIM 33 (1991) 845.

    Article  Google Scholar 

  9. U. Kamachi Mudali and R. K. Dayal, J. Mater. Engng, Perf. 1 (3) pp. 341–5.

  10. N. Parvathavardhini, R. K. Dayal, R. Sivakumar, U. Kamachi Mudali and A. Bharathi, Mater. Sci. Technol., in press.

  11. T. R. Anthony and H. E. Cline, J. Appl. Phys. 49 (1978) 1248.

    Article  CAS  Google Scholar 

  12. J. Stewart, D. B. Wells, P. M. Scott and A. S. Bransden, Corrosion 46 (1990) 618.

    Article  CAS  Google Scholar 

  13. J. C. Ion, T. Moisio, T. F. Pederson, B. Sorensen and C. M. Hansson, J. Mater. Sci. 26 (1991) 43.

    Article  CAS  Google Scholar 

  14. W. J. Tomlinson and M. G. Talks, ibid. 26 (1991) 804.

    Article  CAS  Google Scholar 

  15. R. P. Singh, O. P. Modi, M. N. Mungole and R. P. Singh, Brit. Corros. J. 20 (1985) 28.

    Article  CAS  Google Scholar 

  16. N. Parvathavardhini, R. K. Dayal and J. B. Gnanamoorthy, Bull. Electrochem. 6 (1990) 20.

    Google Scholar 

  17. M. G. Pujar and R. K. Dayal, in “Proceedings of the International Symposium on Industrial Metal Finishing”, Karaikudi, India (1989).

  18. P. G. Moore, in Proceedings of the International Symposium on “Fundamental Aspects of Corrosion Protection by Surface Modification”, edited by E. McCafferty, C. E. Clayton and J. Oudar (The Electrochemical Society, 1984) p. 102.

  19. Micheal Bass (ed.), “Laser Materials Processing: Materials Processing-Theory and Practice”, Vol. 3 (North Holland, Amsterdam, 1983) p. 239.

    Google Scholar 

  20. G. Moulin, J. M. Siffre and P. Marcus, Mater. Sci. Technol. 6 (1990) 100.

    Article  CAS  Google Scholar 

  21. G. Moulin, J. Mater. Sci. 26 (1991) 756.

    Article  CAS  Google Scholar 

  22. P. T. Cottrell, R. P. Frankental, G. W. Kammlott and D. J. Sicanolfi and C. W. Draper, J. Electrochem. Soc. 130 (1983) 998.

    Article  CAS  Google Scholar 

  23. H. J. Hegge, J. Th. M. De Hosson, J. Mater. Sci. 26 (1991) 711.

    Article  CAS  Google Scholar 

  24. M. G. Fontana and R. W. Staehle (eds), “Advances in Corrosion Science and Technology,” Vol. 3 (Plenum Press, New York, 1973) p. 309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujar, M.G., Dayal, R.K., Khanna, A.S. et al. Effect of laser surface melting on the corrosion resistance of chromium-plated 9Cr-1Mo ferritic steel in an acidic medium. JOURNAL OF MATERIALS SCIENCE 28, 3089–3096 (1993). https://doi.org/10.1007/BF00354715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354715

Keywords

Navigation