Skip to main content
Log in

Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexural strength, crack-density evolution, work of fracture, and critical strain energy release rates were measured for wet and dry specimens of the Strombus gigas conch shell. This shell has a crossed-lamellar microarchitecture, which is layered at five distinct length scales and can be considered a form of ceramic “plywood”. The shell has a particularly high ceramic (mineral) content (99.9 wt%), yet achieves unusually good mechanical performance. Even though the strengths are modest (of the order 100 MPa), the laminated structure has a large strain to fracture, and a correspondingly large work of fracture, up to 13 kJ m−2. The large fracture resistance is correlated to the extensive microcracking that occurs along the numerous interfaces within the shell microstructure. Implications of this impressive work of fracture for design of brittle laminates are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Taylor and M. Layman, Palaeontology 15 (1972) 73.

    Google Scholar 

  2. A. J. Kohn, E. R. Meyers and V. R. Meenakashi Proc. Nat. Acad. Sci. 76 (1979) 3406.

    Article  CAS  Google Scholar 

  3. V. J. Laraia and A. H. Heuer, in “Proceedings of the 11th Risø International Symposium of Metallurgy and Materials Science, edited by J. J. Bentsen, J. B. Bilde-Sørensen, N. Christiansen, A. Horsewell, and B. Ralph (Risø National Laboratory, Denmark, 1990) p. 79.

    Google Scholar 

  4. N. V. Wilmot, D. J. Barber, J. D. Taylor and A. L. Graham, Philos. Trans. R. Soc. Lond. B 337 (1992) 21.

    Article  Google Scholar 

  5. S. Weiner, Am. Zool 24 (1984) 945.

    Article  CAS  Google Scholar 

  6. J. D. Currey and A. J. Kohn, J. Mater. Sci. 11 (1976) 1615.

    Article  Google Scholar 

  7. A.P. Jackson, J. F. V. Vincent and R. M. Turner, Proc. R Soc Lond. B 234 (1988) 415.

    Article  Google Scholar 

  8. V. J. Laraia and A. H. Heuer, J. Am. Ceram. Soc. 72 (1989) 2177.

    Article  Google Scholar 

  9. J. Cook and J. E. Gordon, Proc. R. Soc. A. 282 (1964) 508.

    Article  Google Scholar 

  10. A. G. Evans, F. W. Zok and J. Davis, Compos. Sci. Technol. 42 (1991) 3.

    Article  CAS  Google Scholar 

  11. C. A. Folsom, F. W. Zok, F. F. Lange and D. B. Marschall, J. Am. Ceram. Soc. 75 (1992) 2969.

    Article  CAS  Google Scholar 

  12. W. J. Clegg, K. Kendall, N. McN, Alford, T. W. Button and J. D. Birchall, Nature 347 (1990) 455.

    Article  CAS  Google Scholar 

  13. M.-Y. He and J. W. Hutchinson, J. Appl. Mech. 56 (1989) 270.

    Article  Google Scholar 

  14. G. J. Vermeij, “A Natural History of Shells” (Princeton University Press, New Jersey, 1993) p. 102.

    Google Scholar 

  15. P. G. Charalambides, H. C. Cao, J. Lund and A. G. Evans, Mech. Mater. 8 (1990) 269.

    Article  Google Scholar 

  16. J. D. Currey and J. D. Taylor, J. Zool. Lond. 173 (1974) 395.

    Article  Google Scholar 

  17. A. P. Jackson, J. F. V. Vincent and R. M. Turner, J. Mater. Sci. 25 (1990) 3173.

    Article  CAS  Google Scholar 

  18. J. W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29 (1990) 134.

    Google Scholar 

  19. H. G. Tattersall and G. Tappin, J. Mater. Sci. 1 (1966) 296.

    Article  Google Scholar 

  20. D. Broek, “Elementary Fracture Mechanics” (Kluwer Academic, Dordrecht, 1991) p. 123.

    Google Scholar 

  21. P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, J. Appl. Mech. (Trans.ASME) 56 (1989) 77.

    Article  Google Scholar 

  22. S. A. Wainwright, W. D. Biggs, J. D. Currey and J. M. Gosline, “Mechanical Design of Organisms” (Princeton University Press, Princeton, NJ, 1976) p. 167.

    Google Scholar 

  23. S. P. Timoshenko and J. M. Gere, “Mechanics of Materials” (Van Nostrand, New York, 1972) p. 309.

    Google Scholar 

  24. P. Wawrzynek and A. R. Ingraffea, “FRANC 2-D: A Two-dimensional Crack Propagation Simulator” (NASA Contractors Report 4572, Cornell University, 1994).

  25. H. Tada, P. C. Paris and G. R. Irwin, “The Stress Analysis of Cracks Handbook” (Paris Productions, MO, 1985).

    Google Scholar 

  26. A. C. Kimber and J. G. Keer, J. Mater. Sci. Lett. 1 (1982) 353.

    Article  Google Scholar 

  27. F. W. Zok and S. M. Spearing, Acta Metall. Mater. 40 (1992) 2033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn-Spearing, L.T., Kessler, H., Chateau, E. et al. Fracture mechanisms of the Strombus gigas conch shell: implications for the design of brittle laminates. JOURNAL OF MATERIALS SCIENCE 31, 6583–6594 (1996). https://doi.org/10.1007/BF00356266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356266

Keywords

Navigation